Expander mixing lemma – Wikipedia

before-content-x4

The expander mixing lemma intuitively states that the edges of certain

d{displaystyle d}
after-content-x4

-regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets

S{displaystyle S}

and

T{displaystyle T}

is always close to the expected number of edges between them in a random

d{displaystyle d}

-regular graph, namely

dn|S||T|{displaystyle {frac {d}{n}}|S||T|}

.

d-Regular Expander Graphs[edit]

Define an

(n,d,λ){displaystyle (n,d,lambda )}

-graph to be a

d{displaystyle d}

-regular graph

G{displaystyle G}

on

n{displaystyle n}

vertices such that all of the eigenvalues of its adjacency matrix

AG{displaystyle A_{G}}

except one have absolute value at most

λ.{displaystyle lambda .}

The

d{displaystyle d}

-regularity of the graph guarantees that its largest absolute value of an eigenvalue is

d.{displaystyle d.}

In fact, the all-1’s vector

1{displaystyle mathbf {1} }

is an eigenvector of

AG{displaystyle A_{G}}

with eigenvalue

d{displaystyle d}

, and the eigenvalues of the adjacency matrix will never exceed the maximum degree of

G{displaystyle G}

in absolute value.

If we fix

d{displaystyle d}

and

λ{displaystyle lambda }

then

(n,d,λ){displaystyle (n,d,lambda )}

-graphs form a family of expander graphs with a constant spectral gap.

Statement[edit]

Let

G=(V,E){displaystyle G=(V,E)}

be an

(n,d,λ){displaystyle (n,d,lambda )}

-graph. For any two subsets

S,TV{displaystyle S,Tsubseteq V}

, let

e(S,T)=|{(x,y)S×T:xyE(G)}|{displaystyle e(S,T)=|{(x,y)in Stimes T:xyin E(G)}|}

be the number of edges between S and T (counting edges contained in the intersection of S and T twice). Then

Tighter Bound[edit]

We can in fact show that

using similar techniques.[1]

Biregular Graphs[edit]

For biregular graphs, we have the following variation, where we take

λ{displaystyle lambda }

to be the second largest eigenvalue.[2]

Let

G=(L,R,E){displaystyle G=(L,R,E)}

be a bipartite graph such that every vertex in

L{displaystyle L}

is adjacent to

dL{displaystyle d_{L}}

vertices of

R{displaystyle R}

and every vertex in

R{displaystyle R}

is adjacent to

dR{displaystyle d_{R}}

vertices of

L{displaystyle L}

. Let

SL,TR{displaystyle Ssubseteq L,Tsubseteq R}

with

|S|=α|L|{displaystyle |S|=alpha |L|}

and

|T|=β|R|{displaystyle |T|=beta |R|}

. Let

e(G)=|E(G)|{displaystyle e(G)=|E(G)|}

. Then

Note that

dLdR{displaystyle {sqrt {d_{L}d_{R}}}}

is the largest eigenvalue of

G{displaystyle G}

.

Proof of First Statement[edit]

Let

AG{displaystyle A_{G}}

be the adjacency matrix of

G{displaystyle G}

and let

λ1λn{displaystyle lambda _{1}geq cdots geq lambda _{n}}

be the eigenvalues of

AG{displaystyle A_{G}}

(these eigenvalues are real because

AG{displaystyle A_{G}}

is symmetric). We know that

λ1=d{displaystyle lambda _{1}=d}

with corresponding eigenvector

v1=1n1{displaystyle v_{1}={frac {1}{sqrt {n}}}mathbf {1} }

, the normalization of the all-1’s vector. Define

λ=max{λ22,,λn2}{displaystyle lambda ={sqrt {max{lambda _{2}^{2},dots ,lambda _{n}^{2}}}}}

and note that

max{λ22,,λn2}λ2λ12=d2{displaystyle max{lambda _{2}^{2},dots ,lambda _{n}^{2}}leq lambda ^{2}leq lambda _{1}^{2}=d^{2}}

. Because

AG{displaystyle A_{G}}

is symmetric, we can pick eigenvectors

v2,,vn{displaystyle v_{2},ldots ,v_{n}}

of

AG{displaystyle A_{G}}

corresponding to eigenvalues

λ2,,λn{displaystyle lambda _{2},ldots ,lambda _{n}}

so that

{v1,,vn}{displaystyle {v_{1},ldots ,v_{n}}}

forms an orthonormal basis of

Rn{displaystyle mathbf {R} ^{n}}

.

Let

J{displaystyle J}

be the

n×n{displaystyle ntimes n}

matrix of all 1’s. Note that

v1{displaystyle v_{1}}

is an eigenvector of

J{displaystyle J}

with eigenvalue

n{displaystyle n}

and each other

vi{displaystyle v_{i}}

, being perpendicular to

v1=1{displaystyle v_{1}=mathbf {1} }

, is an eigenvector of

J{displaystyle J}

with eigenvalue 0. For a vertex subset

UV{displaystyle Usubseteq V}

, let

1U{displaystyle 1_{U}}

be the column vector with

vth{displaystyle v^{text{th}}}

coordinate equal to 1 if

vU{displaystyle vin U}

and 0 otherwise. Then,

Let

M=AGdnJ{displaystyle M=A_{G}-{frac {d}{n}}J}

. Because

AG{displaystyle A_{G}}

and

J{displaystyle J}

share eigenvectors, the eigenvalues of

M{displaystyle M}

are

0,λ2,,λn{displaystyle 0,lambda _{2},ldots ,lambda _{n}}

. By the Cauchy-Schwarz inequality, we have that

|1STM1T|=|1SM1T|1SM1T{displaystyle |1_{S}^{operatorname {T} }M1_{T}|=|1_{S}cdot M1_{T}|leq |1_{S}||M1_{T}|}

. Furthermore, because

M{displaystyle M}

is self-adjoint, we can write

This implies that

M1Tλ1T{displaystyle |M1_{T}|leq lambda |1_{T}|}

and

|e(S,T)dn|S||T||λ1S1T=λ|S||T|{displaystyle left|e(S,T)-{frac {d}{n}}|S||T|right|leq lambda |1_{S}||1_{T}|=lambda {sqrt {|S||T|}}}

.

Proof Sketch of Tighter Bound[edit]

To show the tighter bound above, we instead consider the vectors

1S|S|n1{displaystyle 1_{S}-{frac {|S|}{n}}mathbf {1} }

and

1T|T|n1{displaystyle 1_{T}-{frac {|T|}{n}}mathbf {1} }

, which are both perpendicular to

v1{displaystyle v_{1}}

. We can expand

because the other two terms of the expansion are zero. The first term is equal to

|S||T|n21TAG1=dn|S||T|{displaystyle {frac {|S||T|}{n^{2}}}mathbf {1} ^{operatorname {T} }A_{G}mathbf {1} ={frac {d}{n}}|S||T|}

, so we find that

We can bound the right hand side by

λ1S|S||n|11T|T||n|1=λ|S||T|(1|S|n)(1|T|n){displaystyle lambda left|1_{S}-{frac {|S|}{|n|}}mathbf {1} right|left|1_{T}-{frac {|T|}{|n|}}mathbf {1} right|=lambda {sqrt {|S||T|left(1-{frac {|S|}{n}}right)left(1-{frac {|T|}{n}}right)}}}

using the same methods as in the earlier proof.

Applications[edit]

The expander mixing lemma can be used to upper bound the size of an independent set within a graph. In particular, the size of an independent set in an

(n,d,λ){displaystyle (n,d,lambda )}

-graph is at most

λn/d.{displaystyle lambda n/d.}

This is proved by letting

T=S{displaystyle T=S}

in the statement above and using the fact that

e(S,S)=0.{displaystyle e(S,S)=0.}

An additional consequence is that, if

G{displaystyle G}

is an

(n,d,λ){displaystyle (n,d,lambda )}

-graph, then its chromatic number

χ(G){displaystyle chi (G)}

is at least

d/λ.{displaystyle d/lambda .}

This is because, in a valid graph coloring, the set of vertices of a given color is an independent set. By the above fact, each independent set has size at most

λn/d,{displaystyle lambda n/d,}

so at least

d/λ{displaystyle d/lambda }

such sets are needed to cover all of the vertices.

A second application of the expander mixing lemma is to provide an upper bound on the maximum possible size of an independent set within a polarity graph. Given a finite projective plane

π{displaystyle pi }

with a polarity

,{displaystyle perp ,}

the polarity graph is a graph where the vertices are the points a of

π{displaystyle pi }

, and vertices

x{displaystyle x}

and

y{displaystyle y}

are connected if and only if

xy.{displaystyle xin y^{perp }.}

In particular, if

π{displaystyle pi }

has order

q,{displaystyle q,}

then the expander mixing lemma can show that an independent set in the polarity graph can have size at most

q3/2q+2q1/21,{displaystyle q^{3/2}-q+2q^{1/2}-1,}

a bound proved by Hobart and Williford.

Converse[edit]

Bilu and Linial showed[3] that a converse holds as well: if a

d{displaystyle d}

-regular graph

G=(V,E){displaystyle G=(V,E)}

satisfies that for any two subsets

S,TV{displaystyle S,Tsubseteq V}

with

ST={displaystyle Scap T=emptyset }

we have

then its second-largest (in absolute value) eigenvalue is bounded by

O(λ(1+log(d/λ))){displaystyle O(lambda (1+log(d/lambda )))}

.

Generalization to hypergraphs[edit]

Friedman and Widgerson proved the following generalization of the mixing lemma to hypergraphs.

Let

H{displaystyle H}

be a

k{displaystyle k}

-uniform hypergraph, i.e. a hypergraph in which every “edge” is a tuple of

k{displaystyle k}

vertices. For any choice of subsets

V1,...,Vk{displaystyle V_{1},…,V_{k}}

of vertices,

References[edit]

  • Alon, N.; Chung, F. R. K. (1988), “Explicit construction of linear sized tolerant networks”, Discrete Mathematics, 72 (1–3): 15–19, doi:10.1016/0012-365X(88)90189-6.

after-content-x4