[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki\/list-of-gravitationally-rounded-objects-of-the-solar-system\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki\/list-of-gravitationally-rounded-objects-of-the-solar-system\/","headline":"List of gravitationally rounded objects of the Solar System","name":"List of gravitationally rounded objects of the Solar System","description":"before-content-x4 This is a list of most likely gravitationally rounded objects of the Solar System, which are objects that have","datePublished":"2022-08-05","dateModified":"2022-08-05","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/44a4cee54c4c053e967fe3e7d054edd4?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/44a4cee54c4c053e967fe3e7d054edd4?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/5\/54\/Sun_white.jpg\/70px-Sun_white.jpg","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/5\/54\/Sun_white.jpg\/70px-Sun_white.jpg","height":"70","width":"70"},"url":"https:\/\/wiki.edu.vn\/en\/wiki\/list-of-gravitationally-rounded-objects-of-the-solar-system\/","wordCount":42435,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4This is a list of most likely gravitationally rounded objects of the Solar System, which are objects that have a rounded, ellipsoidal shape due to their own gravity (but are not necessarily in hydrostatic equilibrium). Apart from the Sun itself, these objects qualify as planets according to common geophysical definitions of that term. The sizes of these objects range over three orders of magnitude in radius, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies, but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined. The Sun’s orbital characteristics are listed in relation to the Galactic Center, while all other objects are listed in order of their distance from the Sun. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4The Sun is a G-type main-sequence star. It contains almost 99.9% of all the mass in the Solar System.[1]Sun[2][3]Symbol (image)[q]Symbol (Unicode)[q]\u2609Discovery yearPrehistoricMean\u00a0distance from the Galactic Centerkm light years\u2248\u20092.5\u00d71017\u2248\u200926,000Mean radiuskm :E[f]695,508109.3Surface areakm2:E[f]6.0877\u00d7101211,990Volumekm3:E[f]1.4122\u00d710181,300,000Masskg :E[f]1.9855\u00d71030332,978.9Gravitational parameterm3\/s21.327\u00d71020Densityg\/cm31.409Equatorial\u00a0gravitym\/s2 g274.027.94Escape velocitykm\/s617.7Rotation perioddays[g]25.38Orbital period about Galactic Center[4]million years225\u2013250Mean orbital speed[4]km\/s\u2248\u2009220Axial tilt[i] to the eclipticdeg.7.25Axial tilt[i] to the galactic planedeg.67.23Mean\u00a0surface\u00a0temperatureK5,778Mean\u00a0coronal\u00a0temperature[5]K1\u20132\u00d7106Photospheric\u00a0compositionH,\u00a0He,\u00a0O,\u00a0C,\u00a0Fe,\u00a0STable of Contents (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Planets[edit]Dwarf planets[edit]Satellites[edit]See also[edit]Unless otherwise cited:[z][edit]Manual calculations (unless otherwise cited)[edit]Individual calculations[edit]Other notes[edit]References[edit]Planets[edit]In 2006, the International Astronomical Union (IAU) defined a planet as a body in orbit around the Sun that was large enough to have achieved hydrostatic equilibrium and to have “cleared the neighbourhood around its orbit”.[6] The practical meaning of “cleared the neighborhood” is that a planet is comparatively massive enough for its gravitation to control the orbits of all objects in its vicinity. In practice, the term “hydrostatic equilibrium” is interpreted loosely. Mercury is round but not actually in hydrostatic equilibrium, but it is universally regarded as a planet nonetheless.[7]According to the IAU’s explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than 99% of the mass of the Solar System.\u00a0*Mercury[8][9][10]*Venus[11][12][10]*Earth[13][14][10]*Mars[15][16][10]\u00b0Jupiter[17][18][10]\u00b0Saturn[19][20][10]\u00d7Uranus[21][22]\u00d7Neptune[23][24][10]\u00a0Symbol[q] or Symbol (Unicode)[q]\u263f\u2640?\u2642\u2643\u2644\u26e2 or \u2645\u2646Discovery yearPrehistoricPrehistoricPrehistoricPrehistoricPrehistoricPrehistoric17811846Mean distancefrom the Sunkm AU57,909,175 0.38709893108,208,930 0.72333199149,597,890 1.00000011227,936,640 1.52366231778,412,010 5.203363011,426,725,400 9.537070322,870,972,200 19.191263934,498,252,900 30.06896348Equatorial radiuskm :E[f]2,440.53 0.38266,051.8 0.94886,378.1366 13,396.19 0.5324771,492 11.20960,268 9.44925,559 4.00724,764 3.883Surface areakm2:E[f]75,000,000 0.1471460,000,000 0.9020510,000,000 1140,000,000 0.274564,000,000,000 125.544,000,000,000 86.278,100,000,000 15.887,700,000,000 15.10Volumekm3:E[f]6.083\u00d710100.0569.28\u00d710110.8571.083\u00d7101211.6318\u00d710110.1511.431\u00d710151,321.38.27\u00d71014763.626.834\u00d7101363.1026.254\u00d7101357.747Masskg :E[f]3.302\u00d710230.0554.8690\u00d710240.8155.972\u00d7102416.4191\u00d710230.1071.8987\u00d710273185.6851\u00d71026958.6849\u00d7102514.51.0244\u00d7102617Gravitational parameterm3\/s22.203\u00d710133.249\u00d710143.986\u00d710144.283\u00d710131.267\u00d710173.793\u00d710165.794\u00d710156.837\u00d71015Densityg\/cm35.435.245.523.9401.330.701.301.76Equatorial\u00a0gravitym\/s2g3.700.3778.870.9049.81.003.710.37824.792.52810.441.0658.870.90411.151.137Escape velocitykm\/s4.2510.3611.185.0259.5435.4921.2923.71Rotation period[g]days58.646225243.01870.997269681.025956750.413540.444010.718330.67125Orbital period[g]days years87.969 0.2408467224.701 0.61519726365.256363 1.0000174686.971 1.88084764,332.59 11.86261510,759.22 29.44749830,688.5 84.01684660,182 164.79132Mean orbital speedkm\/s47.872535.021429.785924.130913.06979.67246.83525.4778Eccentricity0.205630690.006773230.016710220.093412330.048392660.054150600.047167710.00858587Inclination[f]deg.7.003.390[13]1.851.312.480.761.77Axial tilt[i]deg.0.0177.3[h]23.4425.193.1226.7397.86[h]28.32Mean\u00a0surface\u00a0temperatureK440\u2013100730287227152 [j]134 [j]76 [j]73 [j]Mean\u00a0air\u00a0temperature[k]K2881651357673Atmospheric\u00a0compositionHe,\u00a0 Na+K+\u00a0CO2,\u00a0N2, SO2N2,\u00a0O2, Ar, CO2CO2,\u00a0N2ArH2,\u00a0HeH2,\u00a0HeH2,\u00a0HeCH4H2,\u00a0HeCH4Number of known moons[v]001295832714Rings?NoNoNoNoYesYesYesYesPlanetary discriminant[l][o]9.1\u00d71041.35\u00d71061.7\u00d71061.8\u00d71056.25\u00d71051.9\u00d71052.9\u00d71042.4\u00d7104Dwarf planets[edit]Dwarf planets are bodies orbiting the Sun that are massive and warm enough to have achieved hydrostatic equilibrium, but have not cleared their neighbourhoods of similar objects. Since 2008, there have been five dwarf planets recognized by the IAU, although only Pluto has actually been confirmed to be in hydrostatic equilibrium[25] (Ceres is close to equilibrium, though some anomalies remain unexplained).[26] Ceres orbits in the asteroid belt, between Mars and Jupiter. The others all orbit beyond Neptune.\u2020Ceres[27]\u2021Pluto[28][29]\u2021Haumea[30][31][32]\u2021Makemake[33][34]\u00a7Eris[35]Symbol[q] or Symbol (Unicode)[q]\u26b3\u2647 or \u2bd3??\u2bf0Minor\u00a0planet\u00a0number1134340136108136472136199Discovery year18011930200420052005Mean distance from the Sunkm AU413,700,000 2.7665,906,380,000 39.4826,484,000,000 43.3356,850,000,000 45.79210,210,000,000 67.668Mean radiuskm :E[f]473 0.07421,188.3[10]0.186816 (2100 \u00d7 1680 \u00d7 1074) 0.13[36][37]715 0.11[38]1,163 0.18[39]Volumekm3:E[f]4.21\u00d71080.00039[b]6.99\u00d71090.00651.98\u00d71090.00181.7\u00d71090.0016[b]6.59\u00d71090.0061[b]Surface areakm2:E[f]2,770,000 0.0054[a]17,700,000 0.0358,140,000 0.016[y]6,900,000 0.0135[a]17,000,000 0.0333[a]Masskg :E[f]9.39\u00d710200.000161.30\u00d710220.00224.01 \u00b1 0.04\u00d710210.0007[40]\u2248\u20093.1\u00d710210.00051.65\u00d710220.0028Gravitational parameterm3\/s26.263 \u00d7 10108.710 \u00d7 10112.674 \u00d7 10112.069 \u00d7 10111.108 \u00d7 1012Densityg\/cm32.161.872.02[36]2.032.43Equatorial\u00a0gravitym\/s2g0.27[d]0.0280.620.0630.63[d]0.0640.400.0410.82[d]0.084Escape velocitykm\/s[e]0.511.210.910.541.37Rotation period[g]days0.37816.38720.16310.951115.7859Orbital period[g]years4.599247.9283.8306.2559Mean orbital speedkm\/s17.8824.754.48[o]4.40[o]3.44[n]Eccentricity0.0800.2490.1950.1610.436Inclination[f]deg.10.5917.1428.2128.9844.04Axial tilt[i]deg.4119.6[h]\u2248\u2009126[h]?\u2248\u200978Mean\u00a0surface\u00a0temperature[w]K167[41]40[42]r2{textstyle A=4pi r^{2}}, assuming sphericity.^ Volume V derived from the radius using V=43\u03c0r3{textstyle V={frac {4}{3}}pi r^{3}}, assuming sphericity.^ Density derived from the mass divided by the volume.^ Surface gravity derived from the mass m, the gravitational constant G and the radius r: Gm\/r2.^ Escape velocity derived from the mass m, the gravitational constant G and the radius r: \u221a(2Gm)\/r.^ Orbital speed is calculated using the mean orbital radius and the orbital period, assuming a circular orbit.^ Assuming a density of 2.0^ Calculated using the formula T\u00a0=\u00a0Teff(1\u2212qp\u03bd)1\/4252\/r,{textstyle T = {frac {T_{textrm {eff}}(1-qp_{nu })^{1\/4}}{sqrt {2}}}{sqrt {52\/r}},} where Teff =\u00a054.8\u00a0K at 52\u00a0AU, p\u03bd{displaystyle p_{nu }} is the geometric albedo, q\u00a0=\u00a00.8 is the phase integral, and r{displaystyle r} is the distance from the Sun in AU. This formula is a simplified version of that in section 2.2 of Stansberry et al., 2007,[39] where emissivity and beaming parameter were assumed to equal unity, and \u03c0{displaystyle pi } was replaced with 4 accounting for the difference between circle and sphere. All parameters mentioned above were taken from the same paper.Individual calculations[edit]^ Surface area was calculated using the formula for a scalene ellipsoid:2\u03c0(c2+ba2\u2212c2E(\u03b1,m)+bc2a2\u2212c2F(\u03b1,m)),{textstyle 2pi left(c^{2}+b{sqrt {a^{2}-c^{2}}}E(alpha ,m)+{frac {bc^{2}}{sqrt {a^{2}-c^{2}}}}F(alpha ,m)right),} where \u03b1=arccos\u2061(ca){textstyle alpha =arccos left({frac {c}{a}}right)} is the modular angle, or angular eccentricity; m=b2\u2212c2b2sin\u2061(\u03b1)2{textstyle m={frac {b^{2}-c^{2}}{b^{2}sin(alpha )^{2}}}} and F(\u03b1,m){textstyle F(alpha ,m)}, E(\u03b1,m){textstyle E(alpha ,m)} are the incomplete elliptic integrals of the first and second kind, respectively. The values 980\u00a0km, 759\u00a0km, and 498\u00a0km were used for a, b, and c respectively.Other notes[edit]^ Relative to Earth^ Sidereal^ Retrograde^ The inclination of the body’s equator from its orbit.^ At pressure of 1 bar^ At sea level^ The ratio between the mass of the object and those in its immediate neighborhood. Used to distinguish between a planet and a dwarf planet.^ This object’s rotation is synchronous with its orbital period, meaning that it only ever shows one face to its primary.^ Objects’ planetary discriminants based on their similar orbits to Eris. Sedna’s population is currently too little-known for a planetary discriminant to be determined.^ “Unless otherwise cited” means that the information contained in the citation is applicable to an entire line or column of a chart, unless another citation specifically notes otherwise. For example, Titan’s mean surface temperature is cited to the reference in its cell; it is not calculated like the temperatures of most of the other satellites here, because it has an atmosphere that makes the formula inapplicable.^ Callisto’s axial tilt varies between 0 and about 2 degrees on timescales of thousands of years.[82]References[edit]^ Woolfson, Michael Mark (2000). “The Origin and Evolution of the Solar System”. Astronomy & Geophysics. 41 (1): 1.12\u20131.19. Bibcode:2000A&G….41a..12W. doi:10.1046\/j.1468-4004.2000.00012.x.^ NASA Solar System exploration Sun factsheet Archived 2008-01-02 at the Wayback Machine and NASA Sun factsheet Archived 2010-07-15 at the Wayback Machine NASA Retrieved on 2008-11-17 (unless otherwise cited)^ “By the Numbers | Sun – NASA Solar System Exploration”. NASA.^ a b Leong, Stacy (2002). Elert, Glenn (ed.). “Period of the Sun’s Orbit around the Galaxy (Cosmic Year)”. The Physics Factbook (self-published). Retrieved 2008-06-26.^ Aschwanden, Markus J. (2007). “The Sun”. In McFadden, Lucy Ann; Weissman, Paul R.; Johnsson, Torrence V. (eds.). Encyclopedia of the Solar System. Academic Press. p.\u00a080.^ “IAU 2006 General Assembly: Result of the IAU Resolution votes” (Press release). International Astronomical Union. 24 August 2006. news release IAU0603. Archived from the original on 3 January 2007. Retrieved 31 December 2007. (“original IAU news release link”. Archived from the original on 2008-02-05. Retrieved 2008-10-06.)^ Solomon, Sean; Nittler, Larry; Anderson, Brian (20 December 2018). Mercury: The View after MESSENGER. Cambridge Planetary Science Series. Cambridge University Press. pp.\u00a072\u201373. ISBN\u00a09781107154452.^ “NASA Mercury Fact Sheet”. NASA. Archived from the original on 6 November 2015. Retrieved 17 November 2008.^ “NASA Solar System Exploration Factsheet”. NASA. Archived from the original on 24 February 2004. Retrieved 17 November 2008.^ a b c d e f g h “Planets and Pluto: Physical Characteristics”. JPL, NASA.^ “NASA Venus Factsheet”. NASA. Archived from the original on 8 March 2016. Retrieved 17 November 2008.^ “NASA Solar System Exploration Factsheet”. NASA. Archived from the original on 29 September 2006. Retrieved 17 November 2008.^ a b “NASA Earth factsheet”. NASA. Retrieved 17 November 2008.^ “NASA Solar System Exploration Factsheet”. NASA. Archived from the original on 27 August 2009. Retrieved 17 November 2008.^ “NASA Mars Factsheet”. NASA. Archived from the original on 12 June 2010. Retrieved 17 November 2008.^ “NASA Mars Solar System Exploration Factsheet”. NASA. Archived from the original on 23 January 2004. Retrieved 17 November 2008.^ “NASA Jupiter factsheet”. NASA. Archived from the original on 13 October 2011. Retrieved 17 November 2008.^ “NASA Solar System Exploration Factsheet”. NASA. Archived from the original on 15 December 2003. Retrieved 17 November 2008.^ “NASA Saturn factsheet”. NASA. Archived from the original on 18 August 2011. Retrieved 17 November 2008.^ “NASA Solar System Exploration Saturn Factsheet”. NASA. Archived from the original on 24 February 2004. Retrieved 17 November 2008.^ “NASA Uranus Factsheet”. NASA. Archived from the original on 4 August 2011. Retrieved 17 November 2008.^ “NASA Solar System Exploration Uranus Factsheet”. NASA. Archived from the original on 14 December 2003. Retrieved 17 November 2008.^ “NASA Neptune Factsheet”. NASA. Retrieved 17 November 2008.^ “NASA Solar System Exploration Neptune Factsheet”. NASA. Archived from the original on 15 December 2003. Retrieved 17 November 2008.^ a b Nimmo, Francis; et\u00a0al. (2017). “Mean radius and shape of Pluto and Charon from New Horizons images”. Icarus. 287: 12\u201329. arXiv:1603.00821. Bibcode:2017Icar..287…12N. doi:10.1016\/j.icarus.2016.06.027. S2CID\u00a044935431.^ Raymond, C.; Castillo-Rogez, J.C.; Park, R.S.; Ermakov, A.; et\u00a0al. (September 2018). “Dawn Data Reveal Ceres’ Complex Crustal Evolution” (PDF). European Planetary Science Congress. Vol.\u00a012.^ “NASA Asteroid Factsheet”. NASA. Archived from the original on 16 January 2010. Retrieved 17 November 2008.^ a b “NASA Pluto factsheet”. NASA. Retrieved 17 November 2008.^ “NASA Solar System Exploration Pluto Factsheet”. NASA. Archived from the original on 24 February 2004. Retrieved 17 November 2008.^ Lockwood, Alexandra C.; Brown, Michael E.; Stansberry, John A. (2014). “The Size and Shape of the Oblong Dwarf Planet Haumea”. Earth, Moon, and Planets. 111 (3\u20134): 127\u2013137. arXiv:1402.4456. Bibcode:2014EM&P..111..127L. doi:10.1007\/s11038-014-9430-1. S2CID\u00a018646829.^ Rabinowitz, David L.; Barkume, Kristina M.; Brown, Michael E.; Roe, Henry G.; Schwartz, Michael; Tourtellotte, Suzanne W.; Trujillo, Chadwick A. (2006). “Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a rapidly rotating, Pluto-sized object in the Kuiper Belt”. The Astrophysical Journal. 639 (2): 1238\u20131251. arXiv:astro-ph\/0509401. Bibcode:2006ApJ…639.1238R. doi:10.1086\/499575. S2CID\u00a011484750.^ “Jet Propulsion Laboratory Small-Body Database Browser: 136108 Haumea”. NASA’s Jet Propulsion Laboratory. Retrieved 13 November 2008. 2008-05-10 last obs.^ Buie, Marc W. (5 April 2008). “Orbit fit and astrometric record for 136472”. Space Science Department. SwRI. Retrieved 13 July 2008.^ “NASA Small Bodies Database Browser: 136472 Makemake (2005 FY9)”. NASA JPL. Retrieved 2008-10-03. (unless otherwise cited)^ “NASA Small Body Database Browser: Eris”. NASA JPL. Retrieved 2008-11-13. (unless otherwise cited)^ a b Dunham, E. T.; Desch, S. J.; Probst, L. (April 2019). “Haumea’s Shape, Composition, and Internal Structure”. The Astrophysical Journal. 877 (1): 11. arXiv:1904.00522. Bibcode:2019ApJ…877…41D. doi:10.3847\/1538-4357\/ab13b3. S2CID\u00a090262114.^ Ortiz, J. L.; Santos-Sanz, P.; Sicardy, B.; Benedetti-Rossi, G.; B\u00e9rard, D.; Morales, N.; et\u00a0al. (2017). “The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation”. Nature. 550 (7675): 219\u2013223. arXiv:2006.03113. Bibcode:2017Natur.550..219O. doi:10.1038\/nature24051. hdl:10045\/70230. PMID\u00a029022593. S2CID\u00a0205260767.^ Brown, Michael E. (2013). “On the size, shape, and density of dwarf planet Makemake”. The Astrophysical Journal. 767 (1): L7. arXiv:1304.1041. Bibcode:2013ApJ…767L…7B. doi:10.1088\/2041-8205\/767\/1\/L7. S2CID\u00a012937717.^ a b c Stansberry, John A.; Grundy, Will M.; Brown, Michael E.; Cruikshank, Dale P.; Spencer, John; Trilling, David; Margot, Jean-Luc (2007). “Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope”. The Solar System Beyond Neptune: 161. arXiv:astro-ph\/0702538. Bibcode:2008ssbn.book..161S.^ Brown, Michael E.; Bouchez, Antonin H.; Rabinowitz, David L.; Sari, Re’em; Trujillo, Chadwick A.; van Dam, Marcos A.; et\u00a0al. (October 2005). “Keck Observatory laser guide star adaptive optics discovery and characterization of a satellite to large Kuiper belt object 2003 EL61“ (PDF). The Astrophysical Journal Letters. 632 (L45): L45. Bibcode:2005ApJ…632L..45B. doi:10.1086\/497641. S2CID\u00a0119408563.^ Saint-P\u00e9, Olivier; Combes, Michel; Rigaut, Fran\u00e7ois J. (1993). “Ceres surface properties by high-resolution imaging from Earth”. Icarus. 105 (2): 271\u2013281. Bibcode:1993Icar..105..271S. doi:10.1006\/icar.1993.1125.^ Than, Ker (2006). “Astronomers: Pluto colder than expected”. Space.com. Retrieved 5 March 2006 \u2013 via CNN.^ Trujillo, Chadwick A.; Brown, Michael E.; Barkume, Kristina M.; Schaller, Emily L.; Rabinowitz, David L. (February 2007). “The Surface of 2003\u00a0EL61 in the Near Infrared”. The Astrophysical Journal. 655 (2): 1172\u20131178. arXiv:astro-ph\/0601618. Bibcode:2007ApJ…655.1172T. doi:10.1086\/509861. S2CID\u00a0118938812.^ Brown, Michael E.; Barkume, Kristina M.; Blake, Geoffrey A.; Schaller, Emily L.; Rabinowitz, David L.; Roe, Henry G.; Trujillo, Chadwick A. (2007). “Methane and Ethane on the Bright Kuiper Belt Object 2005 FY9“ (PDF). The Astronomical Journal. 133 (1): 284\u2013289. Bibcode:2007AJ….133..284B. doi:10.1086\/509734. S2CID\u00a012146168.^ Licandro, Javier; Grundy, Will M.; Pinilla-Alonso, Noemi; de Leon, Jerome P. (2006). “Visible spectroscopy of 2003 UB313: evidence for N2 ice on the surface of the largest TNO?” (PDF). Astronomy and Astrophysics. 458 (1): L5\u2013L8. arXiv:astro-ph\/0608044. Bibcode:2006A&A…458L…5L. CiteSeerX\u00a010.1.1.257.1298. doi:10.1051\/0004-6361:20066028. S2CID\u00a031587702.^ Ragozzine, Darin; Brown, Michael E.; Trujillo, Chadwick A.; Schaller, Emily L. Orbits and Masses of the 2003 EL61 Satellite System. AAS DPS conference 2008. Archived from the original on 18 July 2013. Retrieved 17 October 2008.^ Chang, Kenneth (26 April 2016). “Makemake, the Moonless Dwarf Planet, Has a Moon, After All”. The New York Times. Retrieved 26 April 2016.^ Brown, Michael E.; van Dam, Marcos A.; Bouchez, Antonin H.; Le Mignant, David; Trujillo, Chadwick A.; Campbell, Randall D.; et\u00a0al. (2006). “Satellites of the largest Kuiper belt objects”. The Astrophysical Journal. 639 (1): L43\u2013L46. arXiv:astro-ph\/0510029. Bibcode:2006ApJ…639L..43B. doi:10.1086\/501524. S2CID\u00a02578831.^ Mike Brown. “The Dwarf Planets”. Retrieved 2008-01-20.^ a b c W.M. Grundy, K.S. Noll, M.W. Buie, S.D. Benecchi, D. Ragozzine & H.G. Roe, ‘The Mutual Orbit, Mass, and Density of Transneptunian Binary G\u01c3k\u00fan\u01c1\u02bch\u00f2md\u00edm\u00e0 ((229762) 2007 UK126)’, Icarus (forthcoming, available online 30 March 2019) Archived 7 April 2019 at the Wayback Machine DOI: 10.1016\/j.icarus.2018.12.037,^ “‘Planet Definition’ Questions & Answers Sheet”. International Astronomical Union. August 24, 2006. Retrieved October 16, 2021.^ Grundy, W.M.; Noll, K.S.; Buie, M.W.; Benecchi, S.D.; Ragozzine, D.; Roe, H.G. (2019). “The mutual orbit, mass, and density of trans-Neptunian binary G\u01c3k\u00fan\u01c1\u02bch\u00f2md\u00edm\u00e0 ((229762) 2007 UK126)”. Icarus. 334: 30\u201338. doi:10.1016\/j.icarus.2018.12.037. S2CID\u00a0126574999. Archived from the original on 2019-04-07. Retrieved 2019-04-11.^ a b c d Grundy, W. M.; Noll, K. S.; Roe, H. G.; Buie, M. W.; Porter, S. B.; Parker, A. H.; Nesvorn\u00fd, D.; Benecchi, S. D.; Stephens, D. C.; Trujillo, C. A. (2019). “Mutual Orbit Orientations of Transneptunian Binaries” (PDF). Icarus. 334: 62\u201378. Bibcode:2019Icar..334…62G. doi:10.1016\/j.icarus.2019.03.035. ISSN\u00a00019-1035. S2CID\u00a0133585837. Archived from the original (PDF) on 2020-01-15. Retrieved 2019-10-26.^ Souami, D.; Braga-Ribas, F.; Sicardy, B.; Morgado, B.; Ortiz, J. L.; Desmars, J.; et\u00a0al. (August 2020). “A multi-chord stellar occultation by the large trans-Neptunian object (174567) Varda”. Astronomy & Astrophysics. 643: A125. arXiv:2008.04818. Bibcode:2020A&A…643A.125S. doi:10.1051\/0004-6361\/202038526. S2CID\u00a0221095753.^ “JPL Small-Body Database Browser: 90482 Orcus (2004 DW)” (2020-01-04 last obs). Jet Propulsion Laboratory. Retrieved 20 February 2020.^ “JPL Small-Body Database Browser: 120347 Salacia (2004 SB60)” (2019-09-21 last obs). Jet Propulsion Laboratory. Retrieved 20 February 2020.^ “NASA JPL Database Browser: 50000 Quaoar” (2019-08-31 last obs). Jet Propulsion Laboratory. Retrieved 20 February 2020.^ “NASA Small Bodies Database Browser: 225088 Gonggong (2007 OR10)”. Jet Propulsion Laboratory. Retrieved 20 February 2020.^ Buie, Marc W. (13 August 2007). “Orbit Fit and Astrometric record for 90377”. Deep Ecliptic Survey. Retrieved 17 January 2006.^ Fornasier, Sonia; Lellouch, Emmanuel; M\u00fcller, Thomas G.; Santos-Sanz, Pablo; Panuzzo, Pasquale; Kiss, Csaba; et\u00a0al. (2013). “TNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of 9\u00a0bright targets at 70\u2013500\u00a0\u00b5m”. Astronomy & Astrophysics. 555: A15. arXiv:1305.0449. Bibcode:2013A&A…555A..15F. doi:10.1051\/0004-6361\/201321329. S2CID\u00a0119261700.^ Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L.; Lellouch, E.; Tancredi, G.; Lecacheux, J.; et\u00a0al. (August 2013). “The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations”. The Astrophysical Journal. 773 (1): 13. Bibcode:2013ApJ…773…26B. doi:10.1088\/0004-637X\/773\/1\/26. hdl:11336\/1641. S2CID\u00a053724395.^ a b Kiss, Csaba; Marton, Gabor; Parker, Alex H.; Grundy, Will; Farkas-Takacs, Aniko; Stansberry, John; et\u00a0al. (13 March 2019), “The mass and density of the dwarf planet (225088) 2007 OR10“, Icarus, 334: 3\u201310, arXiv:1903.05439, Bibcode:2019Icar..334….3K, doi:10.1016\/j.icarus.2019.03.013, S2CID\u00a0119370310^ P\u00e1l, A.; Kiss, C.; M\u00fcller, T.G.; Santos-Sanz, P.; Vilenius, E.; Szalai, N.; Mommert, M.; Lellouch, E.; Rengel, M.; Hartogh, P.; Protopapa, S.; Stansberry, J.; Ortiz, J.-L.; Duffard, R.; Thirouin, A.; Henry, F.; Delsanti, A. (2012). ““TNOs are Cool”: A survey of the trans-Neptunian region. VII. Size and surface characteristics of (90377) Sedna and 2010 EK139“. Astronomy & Astrophysics. 541: L6. arXiv:1204.0899. Bibcode:2012A&A…541L…6P. doi:10.1051\/0004-6361\/201218874. S2CID\u00a0119117186.^ a b Brown, Michael E.; Ragozzine, Darin; Stansberry, John A.; Fraser, Wesley C. (2009). “The size, density, and formation of the Orcus-Vanth system in the Kuiper belt”. Astronomical Journal. 139 (6): 2700. arXiv:0910.4784. Bibcode:2010AJ….139.2700B. doi:10.1088\/0004-6256\/139\/6\/2700. S2CID\u00a08864460.^ a b c B. E. Morgado; et\u00a0al. (8 February 2023). “A dense ring of the trans-Neptunian object Quaoar outside its Roche limit”. Nature. 614 (7947): 239\u2013243. doi:10.1038\/S41586-022-05629-6. ISSN\u00a01476-4687. Wikidata\u00a0Q116754015.^ “JPL Small-Body Database Browser: 90377 Sedna (2003 VB12)” (2016-01-12 last obs). Retrieved 28 May 2019.^ “Distant EKO”. The Kuiper Belt Electronic newsletter. March 2007. Retrieved 17 November 2008.^ “IAUC 8812: Sats of 2003 AZ_84, (50000), (55637), (90482); V1281 Sco; V1280 Sco”. International Astronomical Union. Retrieved 5 July 2011.^ Savage, Don; Jones, Tammy; Villard, Ray (19 April 1995). “Asteroid or mini-planet? Hubble maps the ancient surface of Vesta”. HubbleSite (Press release). News Release STScI-1995-20. Retrieved 17 October 2006.^ “What Is A Planet?”. The Planetary Society. Retrieved 2023-01-01.^ Vernazza, P.; Jorda, L.; \u0160eve\u010dek, P.; Bro\u017e, M.; Viikinkoski, M.; Hanu\u0161, J.; et\u00a0al. (2020). “A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea” (PDF). Nature Astronomy. 273 (2): 136\u2013141. Bibcode:2020NatAs…4..136V. doi:10.1038\/s41550-019-0915-8. hdl:10045\/103308. S2CID\u00a0209938346. Retrieved 2019-10-28.^ Hanu\u0161, J.; Vernazza, P.; Viikinkoski, M.; Ferrais, M.; Rambaux, N.; Podlewska-Gaca, E.; Drouard, A.; Jorda, L.; Jehin, E.; Carry, B.; Marsset, M.; Marchis, F.; Warner, B.; Behrend, R.; Asenjo, V.; Berger, N.; Bronikowska, M.; Brothers, T.; Charbonnel, S.; Colazo, C.; Coliac, J.-F.; Duffard, R.; Jones, A.; Leroy, A.; Marciniak, A.; Melia, R.; Molina, D.; Nadolny, J.; Person, M.; et\u00a0al. (2020). “(704) Interamnia: A transitional object between a dwarf planet and a typical irregular-shaped minor body”. Astronomy & Astrophysics. 633: A65. arXiv:1911.13049. Bibcode:2020A&A…633A..65H. doi:10.1051\/0004-6361\/201936639. S2CID\u00a0208512707.^ Runcorn, Stanley Keith (March 31, 1977). “Interpretation of lunar potential fields”. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 285 (1327): 507\u2013516. Bibcode:1977RSPTA.285..507R. doi:10.1098\/rsta.1977.0094. S2CID\u00a0124703189.^ P.C. Thomas (2010) ‘Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission’, Icarus 208: 395\u2013401^ Leliwa-Kopysty\u0144ski, J.; Kossacki, K. J. (2000). “Evolution of porosity in small icy bodies”. Planetary and Space Science. 48 (7\u20138): 727\u2013745. Bibcode:2000P&SS…48..727L. doi:10.1016\/S0032-0633(00)00038-6.^ Schenk, Paul; Buratti, Bonnie; Clark, Roger; Byrne, Paul; McKinnon, William; Matsuyama, Isamu; Nimmo, Francis; Scipioni, Francesca (2022). “Red Streaks on Tethys: Evidence for Recent Activity”. copernicus.org. Europlanet Science Congress 2022. Retrieved 20 November 2022.^ “Moon Fact Sheet”. nssdc.gsfc.nasa.gov. Retrieved 2023-01-01.^ “NASA Io Factsheet”. NASA. Archived from the original on 1999-04-22. Retrieved 2008-11-16. (unless otherwise cited)^ “NASA Europa Factsheet”. NASA. Archived from the original on 1997-01-05. Retrieved 2008-11-16. (unless otherwise cited)^ “NASA Ganymede Factsheet”. NASA. Archived from the original on 1997-01-05. Retrieved 2008-11-16. (unless otherwise cited)^ “NASA Callisto Factsheet”. NASA. Archived from the original on 1997-01-05. Retrieved 2008-11-16.^ a b c d e Bills, Bruce G. (2005). “Free and forced obliquities of the Galilean satellites of Jupiter”. Icarus. 175 (1): 233\u2013247. Bibcode:2005Icar..175..233B. doi:10.1016\/j.icarus.2004.10.028.^ Orton, Glenn S.; Spencer, John R.; Travis, Larry D.; et\u00a0al. (1996). “Galileo Photopolarimeter-radiometer observations of Jupiter and the Galilean Satellites”. Science. 274 (5286): 389\u2013391. Bibcode:1996Sci…274..389O. doi:10.1126\/science.274.5286.389. S2CID\u00a0128624870.^ Pearl, John C.; Hanel, Rudolf A.; Kunde, Virgil G.; et\u00a0al. (1979). “Identification of gaseous SO2 and new upper limits for other gases on Io”. Nature. 288 (5725): 755. Bibcode:1979Natur.280..755P. doi:10.1038\/280755a0. S2CID\u00a04338190.^ Hall, D. T.; Strobel, D. F.; Feldman, P. D.; McGrath, M. A.; Weaver, H. A. (February 1995). “Detection of an oxygen atmosphere on Jupiter’s moon Europa”. Nature. 373 (6516): 677\u2013679. Bibcode:1995Natur.373..677H. doi:10.1038\/373677a0. ISSN\u00a01476-4687. PMID\u00a07854447. S2CID\u00a04258306.^ Hall, Doyle T.; Feldman, Paul D.; McGrath, Melissa A.; Strobel, Darrell F. (1998). “The Far-Ultraviolet Oxygen Airglow of Europa and Ganymede”. The Astrophysical Journal. 499 (1): 475\u2013481. Bibcode:1998ApJ…499..475H. doi:10.1086\/305604. Retrieved on 2008-11-17.^ Liang, Mao-Chang; Lane, Benjamin F.; Pappalardo, Robert T.; et\u00a0al. (2005). “Atmosphere of Callisto”. Journal of Geophysical Research. 110 (E02003): E02003. Bibcode:2005JGRE..11002003L. doi:10.1029\/2004JE002322. Retrieved on 2008-11-17.^ Waite, J. Hunter Jr.; Combi, Michael R.; Ip, Wing-Huen; et\u00a0al. (2006). “Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure”. Science. 311 (5766): 1419\u20131422. Bibcode:2006Sci…311.1419W. doi:10.1126\/science.1121290. PMID\u00a016527970. S2CID\u00a03032849. Retrieved on 2008-11-17.^ “Neptunian Satellite Fact Sheet”. nssdc.gsfc.nasa.gov. Retrieved 2023-01-01.^ Szak\u00e1ts, R.; Kiss, Cs.; Ortiz, J. L.; Morales, N.; P\u00e1l, A.; M\u00fcller, T. G.; et\u00a0al. (November 2022). “Tidally locked rotation of the dwarf planet (136199) Eris discovered from long-term ground based and space photometry”. Astronomy & Astrophysics. arXiv:2211.07987. doi:10.1051\/0004-6361\/202245234. S2CID\u00a0253522934.^ Baland, R.-M.; Van Hoolst, T.; Yseboodt, M.; Karatekin, \u00d6. (2011). “Titan’s obliquity as evidence of a subsurface ocean?”. Astronomy & Astrophysics. 530 (A141): A141. arXiv:1104.2741. Bibcode:2011A&A…530A.141B. doi:10.1051\/0004-6361\/201116578. S2CID\u00a056245494.^ Nimmo, F.; Spencer, J. R. (2015). “Powering Triton’s recent geological activity by obliquity tides: Implications for Pluto geology”. Icarus. 246: 2\u201310. Bibcode:2015Icar..246….2N. doi:10.1016\/j.icarus.2014.01.044. S2CID\u00a040342189.^ Hasenkopf, Christa A.; Beaver, Melinda R.; Tolbert, Margaret A.; et\u00a0al. (2007). “Optical Properties of Titan Haze Laboratory Analogs Using Cavity Ring Down Spectroscopy” (PDF). Workshop on Planetary Atmospheres (1376): 51. Bibcode:2007plat.work…51H. Archived from the original (PDF) on 2014-05-26. Retrieved 2007-10-16.^ Tryka, Kimberly; Brown, Robert H.; Anicich, Vincent; et\u00a0al. (August 1993). “Spectroscopic Determination of the Phase Composition and Temperature of Nitrogen Ice on Triton”. Science. 261 (5122): 751\u2013754. Bibcode:1993Sci…261..751T. doi:10.1126\/science.261.5122.751. PMID\u00a017757214. S2CID\u00a025093997.^ Niemann, Hasso B.; Atreya, Sushil K.; Bauer, Sven J.; et\u00a0al. (2005). “The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe” (PDF). Nature. 438 (7069): 779\u2013784. Bibcode:2005Natur.438..779N. doi:10.1038\/nature04122. hdl:2027.42\/62703. PMID\u00a016319830. S2CID\u00a04344046.^ ^ Soter, Stephen (2006-08-16). “What is a Planet?”. The Astronomical Journal. 132 (6): 2513\u20132519. arXiv:astro-ph\/0608359. Bibcode:2006AJ….132.2513S. doi:10.1086\/508861. S2CID\u00a014676169.^ Iorio, Lorenzo (March 2007). “Dynamical determination of the mass of the Kuiper Belt from motions of the inner planets of the Solar system”. Monthly Notices of the Royal Astronomical Society. 375 (4): 1311\u20131314. arXiv:gr-qc\/0609023. Bibcode:2007MNRAS.375.1311I. doi:10.1111\/j.1365-2966.2006.11384.x. S2CID\u00a016605188.^ “Saturnian Satellite Fact Sheet”. nssdc.gsfc.nasa.gov. Retrieved 2023-01-01.^ Chen, Jingjing; Kipping, David (2016). “Probabilistic Forecasting of the Masses and Radii of Other Worlds”. The Astrophysical Journal. 834 (1): 17. arXiv:1603.08614. doi:10.3847\/1538-4357\/834\/1\/17. S2CID\u00a0119114880. Retrieved 27 July 2021.^ The IAU Style Manual (PDF). The International Astrophysical Union. 1989. p.\u00a027. Archived (PDF) from the original on June 21, 2018. Retrieved August 20, 2018.^ “NASA Solar System Exploration: Planet Symbols”. NASA. Archived from the original on 2003-12-16. Retrieved 2009-01-26.^ a b Hilton, James L. “When did asteroids become minor planets?” (PDF). U.S. Naval Observatory. Retrieved 2008-10-25.^ JPL\/NASA (April 22, 2015). “What is a Dwarf Planet?”. Jet Propulsion Laboratory. Retrieved 2021-09-24.^ a b “L2\/21-224: Unicode request for dwarf-planet symbols” (PDF).^ “NASA Uranian Satellite Fact Sheet”. NASA. Archived from the original on 2010-01-05. Retrieved 2008-11-17.^ Seidelmann, P. Kenneth, ed. (1992). Explanatory Supplement to the Astronomical Almanac. University Science Books. p.\u00a0384.^ Sheppard, Scott S. “The Jupiter Satellite Page”. Carnegie Institution for Science, Department of Terrestrial Magnetism. Archived from the original on 2013-03-13. Retrieved 2008-04-02. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki\/list-of-gravitationally-rounded-objects-of-the-solar-system\/#breadcrumbitem","name":"List of gravitationally rounded objects of the Solar System"}}]}]