Mixtilinear incircles of a triangle

before-content-x4

From Wikipedia, the free encyclopedia

after-content-x4

In geometry, a mixtilinear incircle of a triangle is a circle tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex

A{displaystyle A}

is called the

A{displaystyle A}

-mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex.

Proof of existence and uniqueness[edit]

The

A{displaystyle A}

-excircle of triangle

ABC{displaystyle ABC}

is unique. Let

Φ{displaystyle Phi }

be a transformation defined by the composition of an inversion centered at

A{displaystyle A}

with radius

ABAC{displaystyle {sqrt {ABcdot AC}}}

and a reflection with respect to the angle bisector on

A{displaystyle A}

. Since inversion and reflection are bijective and preserve touching points, then

Φ{displaystyle Phi }

does as well. Then, the image of the

A{displaystyle A}

-excircle under

Φ{displaystyle Phi }

is a circle internally tangent to sides

AB,AC{displaystyle AB,AC}

and the circumcircle of

ABC{displaystyle ABC}

, that is, the

A{displaystyle A}

-mixtilinear incircle. Therefore, the

A{displaystyle A}

-mixtilinear incircle exists and is unique, and a similar argument can prove the same for the mixtilinear incircles corresponding to

B{displaystyle B}

and

C{displaystyle C}

.[1]

Construction[edit]

The hexagon

The

A{displaystyle A}

-mixtilinear incircle can be constructed with the following sequence of steps.[2]

  1. Draw the incenter
  2. Draw a line through
  3. Draw perpendiculars to

This construction is possible because of the following fact:

Lemma[edit]

The incenter is the midpoint of the touching points of the mixtilinear incircle with the two sides.

Proof[edit]

Let

Γ{displaystyle Gamma }

be the circumcircle of triangle

ABC{displaystyle ABC}

and

TA{displaystyle T_{A}}

be the tangency point of the

A{displaystyle A}

-mixtilinear incircle

ΩA{displaystyle Omega _{A}}

and

Γ{displaystyle Gamma }

. Let

XTA{displaystyle Xneq T_{A}}

be the intersection of line

TAD{displaystyle T_{A}D}

with

Γ{displaystyle Gamma }

and

YTA{displaystyle Yneq T_{A}}

be the intersection of line

TAE{displaystyle T_{A}E}

with

Γ{displaystyle Gamma }

. Homothety with center on

TA{displaystyle T_{A}}

between

ΩA{displaystyle Omega _{A}}

and

Γ{displaystyle Gamma }

implies that

X,Y{displaystyle X,Y}

are the midpoints of

Γ{displaystyle Gamma }

arcs

AB{displaystyle AB}

and

AC{displaystyle AC}

respectively. The inscribed angle theorem implies that

X,I,C{displaystyle X,I,C}

and

Y,I,B{displaystyle Y,I,B}

are triples of collinear points. Pascal’s theorem on hexagon

XCABYTA{displaystyle XCABYT_{A}}

inscribed in

Γ{displaystyle Gamma }

implies that

D,I,E{displaystyle D,I,E}

are collinear. Since the angles

DAI{displaystyle angle {DAI}}

and

IAE{displaystyle angle {IAE}}

are equal, it follows that

I{displaystyle I}

is the midpoint of segment

DE{displaystyle DE}

.[1]

Other properties[edit]

Radius[edit]

The following formula relates the radius

r{displaystyle r}

of the incircle and the radius

ρA{displaystyle rho _{A}}

of the

A{displaystyle A}

-mixtilinear incircle of a triangle

ABC{displaystyle ABC}

:

where

α{displaystyle alpha }

is the magnitude of the angle at

A{displaystyle A}

.[3]

Relationship with points on the circumcircle[edit]

Circles related to the tangency point with the circumcircle[edit]

TABDI{displaystyle T_{A}BDI}

and

TACEI{displaystyle T_{A}CEI}

are cyclic quadrilaterals.[4]

Spiral similarities[edit]

TA{displaystyle T_{A}}

is the center of a spiral similarity that maps

B,I{displaystyle B,I}

to

I,C{displaystyle I,C}

respectively.[1]

Relationship between the three mixtilinear incircles[edit]

Lines joining vertices and mixtilinear tangency points[edit]

The three lines joining a vertex to the point of contact of the circumcircle with the corresponding mixtilinear incircle meet at the external center of similitude of the incircle and circumcircle.[3] The Online Encyclopedia of Triangle Centers lists this point as X(56).[6] It is defined by trilinear coordinates

ac+ab:bc+ab:ca+bc{displaystyle {frac {a}{c+a-b}}:{frac {b}{c+a-b}}:{frac {c}{a+b-c}}}

and barycentric coordinates

a2c+ab:b2c+ab:c2a+bc{displaystyle {frac {a^{2}}{c+a-b}}:{frac {b^{2}}{c+a-b}}:{frac {c^{2}}{a+b-c}}}

.

Radical center[edit]

The radical center of the three mixtilinear incircles is the point

J{displaystyle J}

which divides

OI{displaystyle OI}

in the ratio

where

I,r,O,R{displaystyle I,r,O,R}

are the incenter, inradius, circumcenter and circumradius respectively.[5]

References[edit]


after-content-x4