[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki11\/stimulated-raman-adiabatic-passage-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki11\/stimulated-raman-adiabatic-passage-wikipedia\/","headline":"Stimulated Raman adiabatic passage – Wikipedia","name":"Stimulated Raman adiabatic passage – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia Time evolution of state populations for counter-intuitive STIRAP pulse sequence demonstrating coherent transfer. after-content-x4","datePublished":"2022-07-13","dateModified":"2022-07-13","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki11\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki11\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/2\/21\/STIRAP_Time_Evolution.svg\/285px-STIRAP_Time_Evolution.svg.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/2\/21\/STIRAP_Time_Evolution.svg\/285px-STIRAP_Time_Evolution.svg.png","height":"285","width":"285"},"url":"https:\/\/wiki.edu.vn\/en\/wiki11\/stimulated-raman-adiabatic-passage-wikipedia\/","wordCount":9121,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia Time evolution of state populations for counter-intuitive STIRAP pulse sequence demonstrating coherent transfer. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Stimulated Raman adiabatic passage (STIRAP) is a process that permits transfer of a population between two applicable quantum states via at least two coherent electromagnetic (light) pulses.[1][2] These light pulses drive the transitions of the three level \u0245 atom or multilevel system.[3][4] The process is a form of state-to-state coherent control. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Population transfer in three level \u0245 atom[edit]Consider the description of three level \u0245 atom having ground states |g1\u27e9{displaystyle |g_{1}rangle } and |g2\u27e9{displaystyle |g_{2}rangle } (for simplicity suppose that the energies of the ground states are the same) and excited state |e\u27e9{displaystyle |erangle }. Suppose in the beginning the total population is in the ground state (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4|g1\u27e9{displaystyle |g_{1}rangle }. Here the logic for transformation of the population from ground state |g1\u27e9{displaystyle |g_{1}rangle } to |g2\u27e9{displaystyle |g_{2}rangle } is that initially the unpopulated states |g2\u27e9{displaystyle |g_{2}rangle } and |e\u27e9{displaystyle |erangle } couple, afterward superposition of states |g2\u27e9{displaystyle |g_{2}rangle } and |e\u27e9{displaystyle |erangle } couple to the state |g1\u27e9{displaystyle |g_{1}rangle }. Thereby a state is formed that permits the transformation of the population into state |g2\u27e9{displaystyle |g_{2}rangle } without populating the excited state |e\u27e9{displaystyle |erangle }. This process of transforming the population without populating the excited state is called the stimulated Raman adiabatic passage.[5]Three level theory[edit]Consider states |1\u27e9{displaystyle |1rangle }, |2\u27e9{displaystyle |2rangle } and |3\u27e9{displaystyle |3rangle } with the goal of transferring population initially in state |1\u27e9{displaystyle |1rangle } to state |3\u27e9{displaystyle |3rangle } without populating state |2\u27e9{displaystyle |2rangle }. Allow the system to interact with two coherent radiation fields, the pump and Stokes fields. Let the pump field couple only states |1\u27e9{displaystyle |1rangle } and |2\u27e9{displaystyle |2rangle } and the Stokes field couple only states |2\u27e9{displaystyle |2rangle } and |3\u27e9{displaystyle |3rangle }, for instance due to far-detuning or selection rules. Denote the Rabi frequencies and detunings of the pump and Stokes couplings by \u03a9P\/S{displaystyle Omega _{P\/S}} and \u0394P\/S{displaystyle Delta _{P\/S}}. Setting the energy of state |2\u27e9{displaystyle |2rangle } to zero, the rotating wave Hamiltonian is given byHRWA=\u2212\u210f\u0394P|1\u27e9\u27e81|+\u210f\u0394S|3\u27e9\u27e83|+\u210f\u03a9P2(|1\u27e9\u27e82|+h.c.)+\u210f\u03a9S2(|3\u27e9\u27e82|+h.c.){displaystyle H_{mathrm {RWA} }=-hbar Delta _{P}|1rangle langle 1|+hbar Delta _{S}|3rangle langle 3|+{frac {hbar Omega _{P}}{2}}(|1rangle langle 2|+mathrm {h.c.} )+{frac {hbar Omega _{S}}{2}}(|3rangle langle 2|+mathrm {h.c.} )}The energy ordering of the states is not critical, and here it is taken so that E1(0\u03a9P20\u03a9P2\u0394\u03a9S20\u03a9S2\u03b4){displaystyle H_{mathrm {RWA} }=hbar {begin{pmatrix}0&{frac {Omega _{P}}{2}}&0\\{frac {Omega _{P}}{2}}&Delta &{frac {Omega _{S}}{2}}\\0&{frac {Omega _{S}}{2}}&delta end{pmatrix}}}Here \u0394{displaystyle Delta } and \u03b4{displaystyle delta } denote the single and two-photon detunings respectively. STIRAP is achieved on two-photon resonance \u03b4=0{displaystyle delta =0}. Focusing to this case, the energies upon diagonalization of HRWA{displaystyle H_{mathrm {RWA} }}are given byE0,\u00b1=0,\u0394\u00b1\u03942+\u03a922{displaystyle E_{0,pm }=0,{frac {Delta pm {sqrt {Delta ^{2}+Omega ^{2}}}}{2}}}where \u03a92=\u03a9P2+\u03a9S2{displaystyle Omega ^{2}=Omega _{P}^{2}+Omega _{S}^{2}}. Solving for the E0{displaystyle E_{0}} eigenstate (c1c2c3)T{displaystyle (c_{1},c_{2},c_{3})^{T}}, it is seen to obey the conditionc2=0,\u03a9Pc1+\u03a9Sc3=0{displaystyle c_{2}=0,;Omega _{P}c_{1}+Omega _{S}c_{3}=0}The first condition reveals that the critical two-photon resonance condition yields a dark state which is a superposition of only the initial and target state. By defining the mixing angle tan\u2061\u03b8=\u03a9P\/\u03a9S{displaystyle tan theta =Omega _{P}\/Omega _{S}} and utilizing the normalization condition |c1|2+|c3|2=1{displaystyle |c_{1}|^{2}+|c_{3}|^{2}=1}, the second condition can be used to express this dark state as|dark\u27e9=cos\u2061\u03b8|1\u27e9\u2212sin\u2061\u03b8|3\u27e9{displaystyle |mathrm {dark} rangle =cos theta ,|1rangle -sin theta ,|3rangle }From this, the STIRAP counter-intuitive pulse sequence can be deduced. At \u03b8=0{displaystyle theta =0} which corresponds the presence of only the Stokes field (\u03a9S\u226b\u03a9P{displaystyle Omega _{S}gg Omega _{P}}), the dark state exactly corresponds to the initial state |1\u27e9{displaystyle |1rangle }. As the mixing angle is rotated from 0{displaystyle 0} to \u03c0\/2{displaystyle pi \/2}, the dark state smoothly interpolates from purely state |1\u27e9{displaystyle |1rangle } to purely state |3\u27e9{displaystyle |3rangle }. The latter \u03b8=\u03c0\/2{displaystyle theta =pi \/2} case corresponds to the opposing limit of a strong pump field (\u03a9P\u226b\u03a9S{displaystyle Omega _{P}gg Omega _{S}}). Practically, this corresponds to applying Stokes and pump field pulses to the system with a slight delay between while still maintaining significant temporal overlap between pulses; the delay provides the correct limiting behavior and the overlap ensures adiabatic evolution. A population initially prepared in state |1\u27e9{displaystyle |1rangle } will adiabatically follow the dark state and end up in state |3\u27e9{displaystyle |3rangle } without populating state |2\u27e9{displaystyle |2rangle } as desired. The pulse envelopes can take on fairly arbitrary shape so long as the time rate of change of the mixing angle is slow compared to the energy splitting with respect to the non-dark states. This adiabatic condition takes its simplest form at the single-photon resonance condition \u0394=0{displaystyle Delta =0} where it can be expressed as\u03a9(t)\u226b|\u03b8\u02d9(t)|=|\u03a9S(t)\u03a9\u02d9P(t)\u2212\u03a9P(t)\u03a9\u02d9S(t)|\u03a9(t)2{displaystyle Omega (t)gg |{dot {theta }}(t)|={frac {|Omega _{S}(t){dot {Omega }}_{P}(t)-Omega _{P}(t){dot {Omega }}_{S}(t)|}{Omega (t)^{2}}}}References[edit]^ Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas (2017). “Stimulated Raman adiabatic passage in physics, chemistry, and beyond”. Reviews of Modern Physics. 89 (1): 015006. arXiv:1605.00224. Bibcode:2017RvMP…89a5006V. doi:10.1103\/RevModPhys.89.015006. ISSN\u00a00034-6861. S2CID\u00a0118612686.^ Bergmann, Klaas; Vitanov, Nikolay V.; Shore, Bruce W. (2015). “Perspective: Stimulated Raman adiabatic passage: The status after 25 years”. The Journal of Chemical Physics. 142 (17): 170901. Bibcode:2015JChPh.142q0901B. doi:10.1063\/1.4916903. ISSN\u00a00021-9606. PMID\u00a025956078.^ Unanyan, R.; Fleischhauer, M.; Shore, B.W.; Bergmann, K. (1998). “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states”. Optics Communications. 155 (1\u20133): 144\u2013154. Bibcode:1998OptCo.155..144U. doi:10.1016\/S0030-4018(98)00358-7. ISSN\u00a00030-4018.^ Schwager, Heike (2008). A quantum memory for light in nuclear spin of quantum dot (PDF). Max-Planck-Institute of Quantum Optics.^ Marte, P.; Zoller, P.; Hall, J. L. (1991). “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems”. Physical Review A. 44 (7): R4118\u2013R4121. Bibcode:1991PhRvA..44.4118M. doi:10.1103\/PhysRevA.44.R4118. ISSN\u00a01050-2947. PMID\u00a09906446. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki11\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki11\/stimulated-raman-adiabatic-passage-wikipedia\/#breadcrumbitem","name":"Stimulated Raman adiabatic passage – Wikipedia"}}]}]