[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki12\/clinopyroxene-thermobarometry-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki12\/clinopyroxene-thermobarometry-wikipedia\/","headline":"Clinopyroxene thermobarometry – Wikipedia","name":"Clinopyroxene thermobarometry – Wikipedia","description":"before-content-x4 Clinopyroxene thermobarometry is a scientific method that uses the mineral clinopyroxene to determine the temperature and pressure of the","datePublished":"2022-10-18","dateModified":"2022-10-18","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki12\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki12\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/b\/b6\/Pyrox_names.svg\/300px-Pyrox_names.svg.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/b\/b6\/Pyrox_names.svg\/300px-Pyrox_names.svg.png","height":"200","width":"300"},"url":"https:\/\/wiki.edu.vn\/en\/wiki12\/clinopyroxene-thermobarometry-wikipedia\/","wordCount":2679,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4 Clinopyroxene thermobarometry is a scientific method that uses the mineral clinopyroxene to determine the temperature and pressure of the magma when the mineral crystalized. Clinopyroxene is found in many igneous rocks, so the method can be used to determine information about the entire rock. Many different minerals can be used for geothermobarometry, but clinopyroxene is especially useful because it’s a common phenocryst in igneous rocks and easy to identify, and the crystallization of jadeite, a type of clinopyroxene, implies a growth in molar volume, making it a good indicator of pressure.[1] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4The data given by this technique is used for understanding magmatic crystallization, prograde and retrograde metamorphism, and ore deposit formation.[2] Understanding these processes can aid industries as well as the scientific community. With this data, information about the lithosphere composition can be extrapolated in more detail, and the diamond exploration industry can determine the probability that a kimberlite contains diamonds.[3]Table of Contents (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Methods[edit]Pressure[edit]Temperature[edit]Reaction Types[edit]Applications[edit]References[edit]Methods[edit] Magnified image of komatilites that have clinopyroxene crystals within. The crystals could be used for thermobarometry of the komatilite mineral. Cpx represents clinopyroxene, ol represents olivine, and gl represents glass.Thermobarometry uses equilibrium constants to calculate information about the environmental conditions present during the rocks’ formation.[2] While each rock is forming, it reacts with the surrounding elements until it cools down enough to become inert. Each mineral within the rock will cool and crystalize at different points; a petrogenetic grid is a useful way to visualize each mineral crystalizing in sequence.[2]Individual reactions of specific minerals can be used to calculate either the temperature or pressure. Therefore, two different reactions are needed to calculate both the temperature and pressure of the magma for a single rock. Some reactions are better for pressure and others are better for temperature, based on thermodynamics and Le Chatelier’s Principle.This technique requires each reaction to be calibrated, which is done through experimentation and data analysis. Experimentation involves simulating the temperatures and pressures at which these rocks form and observing how the reaction proceeds at those conditions, while data analysis relies on amassing a large database of rock samples with pressure and temperature information. Experimental data tends to have significant variation, so using data from natural formations is more accurate, if it’s available.[2] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Pressure[edit] The reactions best for pressure (geobarometers) are ones that have a large change in molar volume during the reaction. Higher pressures cause the reaction to decrease in total volume, and lighter pressures allow reaction to increase in total volume. Therefore, based on the proportion of minerals that have larger volumes versus the proportion of minerals that have smaller volumes, the pressure of the environment during the reaction can be calculated, as a function of temperature. Experiments must be done to calibrate each reaction and determine the rate at which the volume changes with changes in pressure. [2]Temperature[edit]The reactions best for temperature (geothermometers) are ones that have a large enthalpy of reaction, which means they release or consume a lot of heat. Higher temperatures allow the reaction to consume that heat while lower temperatures cause the reaction to release heat. Similarly to geobarometers, the proportion of minerals that are formed by releasing heat versus consuming heat can be used to calculate the temperature, as long as the reaction is calibrated. [2]Reaction Types[edit]There are three types of reactions that clinopyroxene is involved in and can be used for thermobarometry.Univariant reactions or displaced equilibria reactions either create or destroy phases within the magma.[2] Each phase will eventually crystalize as a unique mineral. Based on the temperature and pressure conditions, different proportions of these phases will emerge in the final rock. An example reaction is jadeite and quartz reacting to make analbite.[2][1] Jadeite is a type of pyroxene, so this reaction is used for clinopyroxene barometry."},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki12\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki12\/clinopyroxene-thermobarometry-wikipedia\/#breadcrumbitem","name":"Clinopyroxene thermobarometry – Wikipedia"}}]}]