Kaprekar number – Wikipedia

before-content-x4

Base-dependent property of integers

after-content-x4

In mathematics, a natural number in a given number base is a

p{displaystyle p}

Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has

p{displaystyle p}

digits, that add up to the original number. The numbers are named after D. R. Kaprekar.

Definition and properties[edit]

Let

n{displaystyle n}

be a natural number. We define the Kaprekar function for base

after-content-x4
b>1{displaystyle b>1}

p>0{displaystyle p>0}

Fp,b:NN{displaystyle F_{p,b}:mathbb {N} rightarrow mathbb {N} }

to be the following:

where

β=n2modbp{displaystyle beta =n^{2}{bmod {b}}^{p}}

and

A natural number

n{displaystyle n}

is a

p{displaystyle p}

Kaprekar number if it is a fixed point for

Fp,b{displaystyle F_{p,b}}

, which occurs if

Fp,b(n)=n{displaystyle F_{p,b}(n)=n}

.

0{displaystyle 0}

and

1{displaystyle 1}

are trivial Kaprekar numbers for all

b{displaystyle b}

and

p{displaystyle p}

, all other Kaprekar numbers are nontrivial Kaprekar numbers.

For example, in base 10, 45 is a 2-Kaprekar number, because

A natural number

n{displaystyle n}

is a sociable Kaprekar number if it is a periodic point for

Fp,b{displaystyle F_{p,b}}

, where

Fp,bk(n)=n{displaystyle F_{p,b}^{k}(n)=n}

for a positive integer

k{displaystyle k}

(where

Fp,bk{displaystyle F_{p,b}^{k}}

is the

k{displaystyle k}

th iterate of

Fp,b{displaystyle F_{p,b}}

), and forms a cycle of period

k{displaystyle k}

. A Kaprekar number is a sociable Kaprekar number with

k=1{displaystyle k=1}

, and a amicable Kaprekar number is a sociable Kaprekar number with

k=2{displaystyle k=2}

.

The number of iterations

i{displaystyle i}

needed for

Fp,bi(n){displaystyle F_{p,b}^{i}(n)}

to reach a fixed point is the Kaprekar function’s persistence of

n{displaystyle n}

, and undefined if it never reaches a fixed point.

There are only a finite number of

p{displaystyle p}

-Kaprekar numbers and cycles for a given base

b{displaystyle b}

, because if

n=bp+m{displaystyle n=b^{p}+m}

, where

m>0{displaystyle m>0}

n2=(bp+m)2=b2p+2mbp+m2=(bp+2m)bp+m2{displaystyle {begin{aligned}n^{2}&=(b^{p}+m)^{2}\&=b^{2p}+2mb^{p}+m^{2}\&=(b^{p}+2m)b^{p}+m^{2}\end{aligned}}}

and

β=m2{displaystyle beta =m^{2}}

,

α=bp+2m{displaystyle alpha =b^{p}+2m}

, and

Fp,b(n)=bp+2m+m2=n+(m2+m)>n{displaystyle F_{p,b}(n)=b^{p}+2m+m^{2}=n+(m^{2}+m)>n}

nbp{displaystyle nleq b^{p}}

do Kaprekar numbers and cycles exist.

If

d{displaystyle d}

is any divisor of

p{displaystyle p}

, then

n{displaystyle n}

is also a

p{displaystyle p}

-Kaprekar number for base

bp{displaystyle b^{p}}

.

In base

b=2{displaystyle b=2}

, all even perfect numbers are Kaprekar numbers. More generally, any numbers of the form

2n(2n+11){displaystyle 2^{n}(2^{n+1}-1)}

or

2n(2n+1+1){displaystyle 2^{n}(2^{n+1}+1)}

for natural number

n{displaystyle n}

are Kaprekar numbers in base 2.

Set-theoretic definition and unitary divisors[edit]

We can define the set

K(N){displaystyle K(N)}

for a given integer

N{displaystyle N}

as the set of integers

X{displaystyle X}

for which there exist natural numbers

A{displaystyle A}

and

B{displaystyle B}

satisfying the Diophantine equation[1]

An

n{displaystyle n}

-Kaprekar number for base

b{displaystyle b}

is then one which lies in the set

K(bn){displaystyle K(b^{n})}

.

It was shown in 2000[1] that there is a bijection between the unitary divisors of

N1{displaystyle N-1}

and the set

K(N){displaystyle K(N)}

defined above. Let

Inv(a,c){displaystyle operatorname {Inv} (a,c)}

denote the multiplicative inverse of

a{displaystyle a}

modulo

c{displaystyle c}

, namely the least positive integer

m{displaystyle m}

such that

am=1modc{displaystyle am=1{bmod {c}}}

, and for each unitary divisor

d{displaystyle d}

of

N1{displaystyle N-1}

let

e=N1d{displaystyle e={frac {N-1}{d}}}

and

ζ(d)=d Inv(d,e){displaystyle zeta (d)=d {text{Inv}}(d,e)}

. Then the function

ζ{displaystyle zeta }

is a bijection from the set of unitary divisors of

N1{displaystyle N-1}

onto the set

K(N){displaystyle K(N)}

. In particular, a number

X{displaystyle X}

is in the set

K(N){displaystyle K(N)}

if and only if

X=d Inv(d,e){displaystyle X=d {text{Inv}}(d,e)}

for some unitary divisor

d{displaystyle d}

of

N1{displaystyle N-1}

.

The numbers in

K(N){displaystyle K(N)}

occur in complementary pairs,

X{displaystyle X}

and

NX{displaystyle N-X}

. If

d{displaystyle d}

is a unitary divisor of

N1{displaystyle N-1}

then so is

e=N1d{displaystyle e={frac {N-1}{d}}}

, and if

X=dInv(d,e){displaystyle X=doperatorname {Inv} (d,e)}

then

NX=eInv(e,d){displaystyle N-X=eoperatorname {Inv} (e,d)}

.

Kaprekar numbers for

b = 4k + 3 and p = 2n + 1[edit]

Let

k{displaystyle k}

and

n{displaystyle n}

be natural numbers, the number base

b=4k+3=2(2k+1)+1{displaystyle b=4k+3=2(2k+1)+1}

, and

p=2n+1{displaystyle p=2n+1}

. Then:

Proof

Let

X1=bp12=b12i=0p1bi=4k+312i=02n+11bi=(2k+1)i=02nbi{displaystyle {begin{aligned}X_{1}&={frac {b^{p}-1}{2}}\&={frac {b-1}{2}}sum _{i=0}^{p-1}b^{i}\&={frac {4k+3-1}{2}}sum _{i=0}^{2n+1-1}b^{i}\&=(2k+1)sum _{i=0}^{2n}b^{i}end{aligned}}}

Then,

X12=(bp12)2=b2p2bp+14=bp(bp2)+14=(4k+3)2n+1(bp2)+14=(4k+3)2n(bp2)(4k+4)(4k+3)2n(bp2)+14=(4k+3)2n(bp2)+14+(k+1)(4k+3)2n(bp2)=(4k+3)2n1(bp2)(4k+4)+(4k+3)2n1(bp2)+14+(k+1)b2n(b2n+12)=(4k+3)2n1(bp2)+14+(k+1)b2n(bp2)(k+1)b2n1(b2n+12)=(4k+3)p2(bp2)+14+i=p2p1(1)i(k+1)bi(bp2)=(4k+3)p2(bp2)+14+(bp2)(k+1)i=p2p1(1)ibi=(4k+3)1(bp2)+14+(bp2)(k+1)i=1p1(1)ibi=(bp2)+14+(bp2)(k+1)i=0p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)+b2n+1+34=(bp2)(k+1)(i=02n(1)ibi)+4b2n+1+3b2n+1+34=(bp2)(k+1)(i=02n(1)ibi)bp+3b2n+1+34=(bp2)(k+1)(i=02n(1)ibi)bp+3(4k+3)p2+34+3(k+1)i=p2p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)bp+3(4k+3)1+34+3(k+1)i=1p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)bp+3+34+3(k+1)i=0p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)+3(k+1)(i=02n(1)ibi)bp=(bp2+3)(k+1)(i=02n(1)ibi)bp=(bp+1)(k+1)(i=02n(1)ibi)bp=(bp+1)(1+(k+1)i=02n(1)ibi)+1=(bp+1)(k+(k+1)i=12n(1)ibi)+1=(bp+1)(k+(k+1)i=1nb2ib2i1)+1=(bp+1)(k+(k+1)i=1n(b1)b2i1)+1=(bp+1)(k+i=1n((k+1)bk1)b2i1)+1=(bp+1)(k+i=1n(kb+(4k+3)k1)b2i1)+1=(bp+1)(k+i=1n(kb+(3k+2))b2i1)+1=bp(k+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1){displaystyle {begin{aligned}X_{1}^{2}&=left({frac {b^{p}-1}{2}}right)^{2}\&={frac {b^{2p}-2b^{p}+1}{4}}\&={frac {b^{p}(b^{p}-2)+1}{4}}\&={frac {(4k+3)^{2n+1}(b^{p}-2)+1}{4}}\&={frac {(4k+3)^{2n}(b^{p}-2)(4k+4)-(4k+3)^{2n}(b^{p}-2)+1}{4}}\&={frac {-(4k+3)^{2n}(b^{p}-2)+1}{4}}+(k+1)(4k+3)^{2n}(b^{p}-2)\&={frac {-(4k+3)^{2n-1}(b^{p}-2)(4k+4)+(4k+3)^{2n-1}(b^{p}-2)+1}{4}}+(k+1)b^{2n}(b^{2n+1}-2)\&={frac {(4k+3)^{2n-1}(b^{p}-2)+1}{4}}+(k+1)b^{2n}(b^{p}-2)-(k+1)b^{2n-1}(b^{2n+1}-2)\&={frac {(4k+3)^{p-2}(b^{p}-2)+1}{4}}+sum _{i=p-2}^{p-1}(-1)^{i}(k+1)b^{i}(b^{p}-2)\&={frac {(4k+3)^{p-2}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)sum _{i=p-2}^{p-1}(-1)^{i}b^{i}\&={frac {(4k+3)^{1}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)sum _{i=1}^{p-1}(-1)^{i}b^{i}\&={frac {-(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)sum _{i=0}^{p-1}(-1)^{i}b^{i}\&=(b^{p}-2)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)+{frac {-b^{2n+1}+3}{4}}\&=(b^{p}-2)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)+{frac {-4b^{2n+1}+3b^{2n+1}+3}{4}}\&=(b^{p}-2)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)-b^{p}+{frac {3b^{2n+1}+3}{4}}\&=(b^{p}-2)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)-b^{p}+{frac {3(4k+3)^{p-2}+3}{4}}+3(k+1)sum _{i=p-2}^{p-1}(-1)^{i}b^{i}\&=(b^{p}-2)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)-b^{p}+{frac {3(4k+3)^{1}+3}{4}}+3(k+1)sum _{i=1}^{p-1}(-1)^{i}b^{i}\&=(b^{p}-2)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)-b^{p}+{frac {-3+3}{4}}+3(k+1)sum _{i=0}^{p-1}(-1)^{i}b^{i}\&=(b^{p}-2)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)+3(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)-b^{p}\&=(b^{p}-2+3)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)-b^{p}\&=(b^{p}+1)(k+1)left(sum _{i=0}^{2n}(-1)^{i}b^{i}right)-b^{p}\&=(b^{p}+1)left(-1+(k+1)sum _{i=0}^{2n}(-1)^{i}b^{i}right)+1\&=(b^{p}+1)left(k+(k+1)sum _{i=1}^{2n}(-1)^{i}b^{i}right)+1\&=(b^{p}+1)left(k+(k+1)sum _{i=1}^{n}b^{2i}-b^{2i-1}right)+1\&=(b^{p}+1)left(k+(k+1)sum _{i=1}^{n}(b-1)b^{2i-1}right)+1\&=(b^{p}+1)left(k+sum _{i=1}^{n}((k+1)b-k-1)b^{2i-1}right)+1\&=(b^{p}+1)left(k+sum _{i=1}^{n}(kb+(4k+3)-k-1)b^{2i-1}right)+1\&=(b^{p}+1)left(k+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)+1\&=b^{p}left(k+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)+left(k+1+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)end{aligned}}}

The two numbers

α{displaystyle alpha }

and

β{displaystyle beta }

are

and their sum is

α+β=(k+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1)=2k+1+i=1n((2k)b+2(3k+2))b2i1=2k+1+i=1n((2k)b+(6k+4))b2i1=2k+1+i=1n((2k)b+(4k+3))b2i1+(2k+1)b2i1=2k+1+i=1n((2k+1)b)b2i1+(2k+1)b2i1=2k+1+i=1n(2k+1)b2i+(2k+1)b2i1=2k+1+i=12n(2k+1)bi=i=02n(2k+1)bi=(2k+1)i=02nbi=X1{displaystyle {begin{aligned}alpha +beta &=left(k+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)+left(k+1+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)\&=2k+1+sum _{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\&=2k+1+sum _{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\&=2k+1+sum _{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\&=2k+1+sum _{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\&=2k+1+sum _{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\&=2k+1+sum _{i=1}^{2n}(2k+1)b^{i}\&=sum _{i=0}^{2n}(2k+1)b^{i}\&=(2k+1)sum _{i=0}^{2n}b^{i}&=X_{1}\end{aligned}}}

Thus,

X1{displaystyle X_{1}}

is a Kaprekar number.

Proof

Let

X2=b2n+1+12=b2n+112+1=X1+1{displaystyle {begin{aligned}X_{2}&={frac {b^{2n+1}+1}{2}}\&={frac {b^{2n+1}-1}{2}}+1\&=X_{1}+1end{aligned}}}

Then,

X22=(X1+1)2=X12+2X1+1=X12+2X1+1=bp(k+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1)+bp1+1=bp(k+1+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1){displaystyle {begin{aligned}X_{2}^{2}&=(X_{1}+1)^{2}\&=X_{1}^{2}+2X_{1}+1\&=X_{1}^{2}+2X_{1}+1\&=b^{p}left(k+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)+left(k+1+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)+b^{p}-1+1\&=b^{p}left(k+1+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)+left(k+1+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)end{aligned}}}

The two numbers

α{displaystyle alpha }

and

β{displaystyle beta }

are

and their sum is

α+β=(k+1+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1)=2k+2+i=1n((2k)b+2(3k+2))b2i1=2k+2+i=1n((2k)b+(6k+4))b2i1=2k+2+i=1n((2k)b+(4k+3))b2i1+(2k+1)b2i1=2k+2+i=1n((2k+1)b)b2i1+(2k+1)b2i1=2k+2+i=1n(2k+1)b2i+(2k+1)b2i1=2k+2+i=12n(2k+1)bi=1+i=02n(2k+1)bi=1+(2k+1)i=02nbi=1+X1=X2{displaystyle {begin{aligned}alpha +beta &=left(k+1+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)+left(k+1+sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}right)\&=2k+2+sum _{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\&=2k+2+sum _{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\&=2k+2+sum _{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\&=2k+2+sum _{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\&=2k+2+sum _{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\&=2k+2+sum _{i=1}^{2n}(2k+1)b^{i}\&=1+sum _{i=0}^{2n}(2k+1)b^{i}\&=1+(2k+1)sum _{i=0}^{2n}b^{i}\&=1+X_{1}\&=X_{2}end{aligned}}}

Thus,

X2{displaystyle X_{2}}

is a Kaprekar number.

b = m2k + m + 1 and p = mn + 1[edit]

Let

m{displaystyle m}

,

k{displaystyle k}

, and

n{displaystyle n}

be natural numbers, the number base

b=m2k+m+1{displaystyle b=m^{2}k+m+1}

, and the power

p=mn+1{displaystyle p=mn+1}

. Then:

b = m2k + m + 1 and p = mn + m − 1[edit]

Let

m{displaystyle m}

,

k{displaystyle k}

, and

n{displaystyle n}

be natural numbers, the number base

b=m2k+m+1{displaystyle b=m^{2}k+m+1}

, and the power

p=mn+m1{displaystyle p=mn+m-1}

. Then:

b = m2k + m2m + 1 and p = mn + 1[edit]

Let

m{displaystyle m}

,

k{displaystyle k}

, and

n{displaystyle n}

be natural numbers, the number base

b=m2k+m2m+1{displaystyle b=m^{2}k+m^{2}-m+1}

, and the power

p=mn+m1{displaystyle p=mn+m-1}

. Then:

b = m2k + m2m + 1 and p = mn + m − 1[edit]

Let

m{displaystyle m}

,

k{displaystyle k}

, and

n{displaystyle n}

be natural numbers, the number base

b=m2k+m2m+1{displaystyle b=m^{2}k+m^{2}-m+1}

, and the power

p=mn+m1{displaystyle p=mn+m-1}

. Then:

Kaprekar numbers and cycles of

All numbers are in base

b{displaystyle b}

.

Base Power Nontrivial Kaprekar numbers Cycles
2 1 10
3 1 2, 10
4 1 3, 10
5 1 4, 5, 10
6 1 5, 6, 10
7 1 3, 4, 6, 10
8 1 7, 10 2 → 4 → 2
9 1 8, 10
10 1 9, 10
11 1 5, 6, A, 10
12 1 B, 10
13 1 4, 9, C, 10
14 1 D, 10
15 1 7, 8, E, 10

2 → 4 → 2

9 → B → 9

16 1 6, A, F, 10
2 2 11
3 2 22, 100
4 2 12, 22, 33, 100
5 2 14, 31, 44, 100
6 2 23, 33, 55, 100

15 → 24 → 15

41 → 50 → 41

7 2 22, 45, 66, 100
8 2 34, 44, 77, 100

4 → 20 → 4

11 → 22 → 11

45 → 56 → 45

2 3 111, 1000 10 → 100 → 10
3 3 111, 112, 222, 1000 10 → 100 → 10
2 4 110, 1010, 1111, 10000
3 4 121, 2102, 2222, 10000
2 5 11111, 100000

10 → 100 → 10000 → 1000 → 10

111 → 10010 → 1110 → 1010 → 111

3 5 11111, 22222, 100000 10 → 100 → 10000 → 1000 → 10
2 6 11100, 100100, 111111, 1000000

100 → 10000 → 100

1001 → 10010 → 1001

100101 → 101110 → 100101

3 6 10220, 20021, 101010, 121220, 202202, 212010, 222222, 1000000

100 → 10000 → 100

122012 → 201212 → 122012

2 7 1111111, 10000000

10 → 100 → 10000 → 10

1000 → 1000000 → 100000 → 1000

100110 → 101111 → 110010 → 1010111 → 1001100 → 111101 → 100110

3 7 1111111, 1111112, 2222222, 10000000

10 → 100 → 10000 → 10

1000 → 1000000 → 100000 → 1000

1111121 → 1111211 → 1121111 → 1111121

2 8 1010101, 1111000, 10001000, 10101011, 11001101, 11111111, 100000000
3 8 2012021, 10121020, 12101210, 21121001, 20210202, 22222222, 100000000
2 9 10010011, 101101101, 111111111, 1000000000

10 → 100 → 10000 → 100000000 → 10000000 → 100000 → 10

1000 → 1000000 → 1000

10011010 → 11010010 → 10011010

Extension to negative integers[edit]

Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.

See also[edit]

References[edit]


after-content-x4