Complex Lie algebra – Wikipedia

before-content-x4

From Wikipedia, the free encyclopedia

after-content-x4

In mathematics, a complex Lie algebra is a Lie algebra over the complex numbers.

Given a complex Lie algebra

g{displaystyle {mathfrak {g}}}

, its conjugate

g¯{displaystyle {overline {mathfrak {g}}}}

is a complex Lie algebra with the same underlying real vector space but with

i=1{displaystyle i={sqrt {-1}}}

acting as

i{displaystyle -i}

instead.[1] As a real Lie algebra, a complex Lie algebra

after-content-x4
g{displaystyle {mathfrak {g}}}

is trivially isomorphic to its conjugate. A complex Lie algebra is isomorphic to its conjugate if and only if it admits a real form (and is said to be defined over the real numbers).

Real form[edit]

Given a complex Lie algebra

g{displaystyle {mathfrak {g}}}

, a real Lie algebra

g0{displaystyle {mathfrak {g}}_{0}}

is said to be a real form of

g{displaystyle {mathfrak {g}}}

if the complexification

g0RC{displaystyle {mathfrak {g}}_{0}otimes _{mathbb {R} }mathbb {C} }

is isomorphic to

g{displaystyle {mathfrak {g}}}

.

A real form

g0{displaystyle {mathfrak {g}}_{0}}

is abelian (resp. nilpotent, solvable, semisimple) if and only if

g{displaystyle {mathfrak {g}}}

is abelian (resp. nilpotent, solvable, semisimple).[2] On the other hand, a real form

g0{displaystyle {mathfrak {g}}_{0}}

is simple if and only if either

g{displaystyle {mathfrak {g}}}

is simple or

g{displaystyle {mathfrak {g}}}

is of the form

s×s¯{displaystyle {mathfrak {s}}times {overline {mathfrak {s}}}}

where

s,s¯{displaystyle {mathfrak {s}},{overline {mathfrak {s}}}}

are simple and are the conjugates of each other.[2]

The existence of a real form in a complex Lie algebra

g{displaystyle {mathfrak {g}}}

implies that

g{displaystyle {mathfrak {g}}}

is isomorphic to its conjugate;[1] indeed, if

g=g0RC=g0ig0{displaystyle {mathfrak {g}}={mathfrak {g}}_{0}otimes _{mathbb {R} }mathbb {C} ={mathfrak {g}}_{0}oplus i{mathfrak {g}}_{0}}

, then let

τ:gg¯{displaystyle tau :{mathfrak {g}}to {overline {mathfrak {g}}}}

denote the

R{displaystyle mathbb {R} }

-linear isomorphism induced by complex conjugate and then

which is to say

τ{displaystyle tau }

is in fact a

C{displaystyle mathbb {C} }

-linear isomorphism.

Conversely, suppose there is a

C{displaystyle mathbb {C} }

-linear isomorphism

τ:gg¯{displaystyle tau :{mathfrak {g}}{overset {sim }{to }}{overline {mathfrak {g}}}}

; without loss of generality, we can assume it is the identity function on the underlying real vector space. Then define

g0={zg|τ(z)=z}{displaystyle {mathfrak {g}}_{0}={zin {mathfrak {g}}|tau (z)=z}}

, which is clearly a real Lie algebra. Each element

z{displaystyle z}

in

g{displaystyle {mathfrak {g}}}

can be written uniquely as

z=21(z+τ(z))+i21(iτ(z)iz){displaystyle z=2^{-1}(z+tau (z))+i2^{-1}(itau (z)-iz)}

. Here,

τ(iτ(z)iz)=iz+iτ(z){displaystyle tau (itau (z)-iz)=-iz+itau (z)}

and similarly

τ{displaystyle tau }

fixes

z+τ(z){displaystyle z+tau (z)}

. Hence,

g=g0ig0{displaystyle {mathfrak {g}}={mathfrak {g}}_{0}oplus i{mathfrak {g}}_{0}}

; i.e.,

g0{displaystyle {mathfrak {g}}_{0}}

is a real form.

Complex Lie algebra of a complex Lie group[edit]

Let

g{displaystyle {mathfrak {g}}}

be a semisimple complex Lie algebra that is the Lie algebra of a complex Lie group

G{displaystyle G}

. Let

h{displaystyle {mathfrak {h}}}

be a Cartan subalgebra of

g{displaystyle {mathfrak {g}}}

and

H{displaystyle H}

the Lie subgroup corresponding to

h{displaystyle {mathfrak {h}}}

; the conjugates of

H{displaystyle H}

are called Cartan subgroups.

Suppose there is the decomposition

g=nhn+{displaystyle {mathfrak {g}}={mathfrak {n}}^{-}oplus {mathfrak {h}}oplus {mathfrak {n}}^{+}}

given by a choice of positive roots. Then the exponential map defines an isomorphism from

n+{displaystyle {mathfrak {n}}^{+}}

to a closed subgroup

UG{displaystyle Usubset G}

.[3] The Lie subgroup

BG{displaystyle Bsubset G}

corresponding to the Borel subalgebra

b=hn+{displaystyle {mathfrak {b}}={mathfrak {h}}oplus {mathfrak {n}}^{+}}

is closed and is the semidirect product of

H{displaystyle H}

and

U{displaystyle U}

;[4] the conjugates of

B{displaystyle B}

are called Borel subgroups.

  1. ^ a b Knapp 2002, Ch. VI, § 9.
  2. ^ a b Serre 2001, Ch. II, § 8, Theorem 9.
  3. ^ Serre 2001, Ch. VIII, § 4, Theorem 6 (a).
  4. ^ Serre 2001, Ch. VIII, § 4, Theorem 6 (b).

References[edit]



after-content-x4