Alon–Boppana bound – Wikipedia

before-content-x4

In spectral graph theory, the Alon–Boppana bound provides a lower bound on the second-largest eigenvalue of the adjacency matrix of a

d{displaystyle d}
after-content-x4

-regular graph,[1] meaning a graph in which every vertex has degree

d{displaystyle d}

. The reason for the interest in the second-largest eigenvalue is that the largest eigenvalue is guaranteed to be

d{displaystyle d}

due to

d{displaystyle d}

-regularity, with the all-ones vector being the associated eigenvector. The graphs that come close to meeting this bound are Ramanujan graphs, which are examples of the best possible expander graphs.

Its discoverers are Noga Alon and Ravi Boppana.

Theorem statement[edit]

Let

G{displaystyle G}

be a

d{displaystyle d}

-regular graph on

n{displaystyle n}

vertices with diameter

m{displaystyle m}

, and let

A{displaystyle A}

be its adjacency matrix. Let

λ1λ2λn{displaystyle lambda _{1}geq lambda _{2}geq cdots geq lambda _{n}}

be its eigenvalues. Then

The above statement is the original one proved by Noga Alon. Some slightly weaker variants exist to improve the ease of proof or improve intuition. Two of these are shown in the proofs below.

Intuition[edit]

The intuition for the number

2d1{displaystyle 2{sqrt {d-1}}}

comes from considering the infinite

d{displaystyle d}

-regular tree.[2] This graph is a universal cover of

d{displaystyle d}

-regular graphs, and it has spectral radius

2d1.{displaystyle 2{sqrt {d-1}}.}

Saturation[edit]

A graph that essentially saturates the Alon–Boppana bound is called a Ramanujan graph. More precisely, a Ramanujan graph is a

d{displaystyle d}

-regular graph such that

|λ2|,|λn|2d1.{displaystyle |lambda _{2}|,|lambda _{n}|leq 2{sqrt {d-1}}.}

A theorem by Friedman[3] shows that, for every

d{displaystyle d}

and

ϵ>0{displaystyle epsilon >0}

n{displaystyle n}

, a random

d{displaystyle d}

-regular graph

G{displaystyle G}

on

n{displaystyle n}

vertices satisfies

max{|λ2|,|λn|}<2d1+ϵ{displaystyle max{|lambda _{2}|,|lambda _{n}|}<2{sqrt {d-1}}+epsilon }

with high probability. This means that a random

n{displaystyle n}

-vertex

d{displaystyle d}

-regular graph is typically “almost Ramanujan.”

First proof (slightly weaker statement)[edit]

We will prove a slightly weaker statement, namely dropping the specificity on the second term and simply asserting

λ22d1o(1).{displaystyle lambda _{2}geq 2{sqrt {d-1}}-o(1).}

Here, the

o(1){displaystyle o(1)}

term refers to the asymptotic behavior as

n{displaystyle n}

grows without bound while

d{displaystyle d}

remains fixed.

Let the vertex set be

V.{displaystyle V.}

By the min-max theorem, it suffices to construct a nonzero vector

zR|V|{displaystyle zin mathbb {R} ^{|V|}}

such that

zT1=0{displaystyle z^{text{T}}mathbf {1} =0}

and

zTAzzTz2d1o(1).{displaystyle {frac {z^{text{T}}Az}{z^{text{T}}z}}geq 2{sqrt {d-1}}-o(1).}

Pick some value

rN.{displaystyle rin mathbb {N} .}

For each vertex in

V,{displaystyle V,}

define a vector

f(v)R|V|{displaystyle f(v)in mathbb {R} ^{|V|}}

as follows. Each component will be indexed by a vertex

u{displaystyle u}

in the graph. For each

u,{displaystyle u,}

if the distance between

u{displaystyle u}

and

v{displaystyle v}

is

k,{displaystyle k,}

then the

u{displaystyle u}

-component of

f(v){displaystyle f(v)}

is

f(v)u=wk=(d1)k/2{displaystyle f(v)_{u}=w_{k}=(d-1)^{-k/2}}

if

kr1{displaystyle kleq r-1}

and

0{displaystyle 0}

if

kr.{displaystyle kgeq r.}

We claim that any such vector

x=f(v){displaystyle x=f(v)}

satisfies

To prove this, let

Vk{displaystyle V_{k}}

denote the set of all vertices that have a distance of exactly

k{displaystyle k}

from

v.{displaystyle v.}

First, note that

Second, note that

where the last term on the right comes from a possible overcounting of terms in the initial expression. The above then implies

which, when combined with the fact that

|Vk+1|(d1)|Vk|{displaystyle |V_{k+1}|leq (d-1)|V_{k}|}

for any

k,{displaystyle k,}

yields

The combination of the above results proves the desired inequality.

For convenience, define the

(r1){displaystyle (r-1)}

-ball of a vertex

v{displaystyle v}

to be the set of vertices with a distance of at most

r1{displaystyle r-1}

from

v.{displaystyle v.}

Notice that the entry of

f(v){displaystyle f(v)}

corresponding to a vertex

u{displaystyle u}

is nonzero if and only if

u{displaystyle u}

lies in the

(r1){displaystyle (r-1)}

-ball of

x.{displaystyle x.}

The number of vertices within distance

k{displaystyle k}

of a given vertex is at most

1+d+d(d1)+d(d1)2++d(d1)k1=dk+1.{displaystyle 1+d+d(d-1)+d(d-1)^{2}+cdots +d(d-1)^{k-1}=d^{k}+1.}

Therefore, if

nd2r1+2,{displaystyle ngeq d^{2r-1}+2,}

then there exist vertices

u,v{displaystyle u,v}

with distance at least

2r.{displaystyle 2r.}

Let

x=f(v){displaystyle x=f(v)}

and

y=f(u).{displaystyle y=f(u).}

It then follows that

xTy=0,{displaystyle x^{text{T}}y=0,}

because there is no vertex that lies in the

(r1){displaystyle (r-1)}

-balls of both

x{displaystyle x}

and

y.{displaystyle y.}

It is also true that

xTAy=0,{displaystyle x^{text{T}}Ay=0,}

because no vertex in the

(r1){displaystyle (r-1)}

-ball of

x{displaystyle x}

can be adjacent to a vertex in the

(r1){displaystyle (r-1)}

-ball of

y.{displaystyle y.}

Now, there exists some constant

c{displaystyle c}

such that

z=xcy{displaystyle z=x-cy}

satisfies

zT1=0.{displaystyle z^{text{T}}mathbf {1} =0.}

Then, since

xTy=xTAy=0,{displaystyle x^{text{T}}y=x^{text{T}}Ay=0,}

Finally, letting

r{displaystyle r}

grow without bound while ensuring that

nd2r1+2{displaystyle ngeq d^{2r-1}+2}

(this can be done by letting

r{displaystyle r}

grow sublogarithmically as a function of

n{displaystyle n}

) makes the error term

o(1){displaystyle o(1)}

in

n.{displaystyle n.}

Second proof (slightly modified statement)[edit]

This proof will demonstrate a slightly modified result, but it provides better intuition for the source of the number

2d1.{displaystyle 2{sqrt {d-1}}.}

Rather than showing that

λ22d1o(1),{displaystyle lambda _{2}geq 2{sqrt {d-1}}-o(1),}

we will show that

λ=max(|λ2|,|λn|)2d1o(1).{displaystyle lambda =max(|lambda _{2}|,|lambda _{n}|)geq 2{sqrt {d-1}}-o(1).}

First, pick some value

kN.{displaystyle kin mathbb {N} .}

Notice that the number of closed walks of length

2k{displaystyle 2k}

is

However, it is also true that the number of closed walks of length

2k{displaystyle 2k}

starting at a fixed vertex

v{displaystyle v}

in a

d{displaystyle d}

-regular graph is at least the number of such walks in an infinite

d{displaystyle d}

-regular tree, because an infinite

d{displaystyle d}

-regular tree can be used to cover the graph. By the definition of the Catalan numbers, this number is at least

Ckd(d1)k,{displaystyle C_{k}d(d-1)^{k},}

where

Ck=1k+1(2kk){displaystyle C_{k}={frac {1}{k+1}}{binom {2k}{k}}}

is the

kth{displaystyle k^{text{th}}}

Catalan number.

It follows that

Letting

n{displaystyle n}

grow without bound and letting

k{displaystyle k}

grow without bound but sublogarithmically in

n{displaystyle n}

yields

λ2d1o(1).{displaystyle lambda geq 2{sqrt {d-1}}-o(1).}

References[edit]

  1. ^ Nilli, A. (1991), “On the second eigenvalue of a graph”, Discrete Mathematics, 91 (2): 207–210, doi:10.1016/0012-365X(91)90112-F, MR 1124768
  2. ^ Hoory, S.; Linial, N.; Wigderson, A. (2006), “Expander Graphs and their Applications” (PDF), Bull. Amer. Math. Soc. (N.S.), 43 (4): 439–561, doi:10.1090/S0273-0979-06-01126-8
  3. ^ Friedman, Joel (2003). “Relative expanders or weakly relatively Ramanujan graphs”. Duke Math. J. 118 (1): 19–35. doi:10.1215/S0012-7094-03-11812-8. MR 1978881.


after-content-x4