[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/carbonate-chloride-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki19\/carbonate-chloride-wikipedia\/","headline":"Carbonate chloride – Wikipedia","name":"Carbonate chloride – Wikipedia","description":"From Wikipedia, the free encyclopedia Class of chemical compounds The carbonate chlorides are double salts containing both carbonate and chloride","datePublished":"2022-05-25","dateModified":"2022-05-25","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki19\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki19\/carbonate-chloride-wikipedia\/","about":["Wiki"],"wordCount":9237,"articleBody":"From Wikipedia, the free encyclopediaClass of chemical compoundsThe carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of halocarbonates. In turn these halocarbonates are a part of mixed anion materials.The carbonate chlorides do not have a bond from chlorine to carbon, however “chlorocarbonate” has also been used to refer to the chloroformates which contain the group ClC(O)O-.Table of ContentsFormation[edit]Natural[edit]Minerals[edit]Artificial[edit]Complexes[edit]References[edit]Formation[edit]Natural[edit]Scapolite is produced in nature by metasomatism, where hot high pressure water solutions of carbon dioxide and sodium chloride modify plagioclase.[1]Chloroartinite is found in Sorel cements exposed to air.[2]Minerals[edit]In 2016 27 chloride containing carbonate minerals were known.[3]nameformulacrystal systemspace groupunit celldensityOptics refractive indexRaman spectrumcommentsreferenceAlexkhomyakoviteK6(Ca2Na)(CO3)5Cl\u22196H2OhexagonalP63\/mcma=9.2691, c=15.8419, V=1178.72 Z = 22.25uniaxial (\u2013), \u03c9=1.543, \u03b5=1.476[4]AshburtoniteHPb4Cu4(Si4O12)(HCO3)4(OH)4Cl[3]Balliranoite(Na,K)6Ca2(Si6Al6O24)Cl2(CO3)hexagonalP63a=12.695 c=5.325 V=743.2 Z=12.48uniaxial (+), \u03c9=1.523, \u03b5=1.525[5]BarstowitePb4(CO3)Cl6.H2OChlorartiniteMg2(CO3)Cl(OH).3H2OChlormagaluminite(Mg,Fe2+)4Al2(OH)12(Cl, 0.5 CO3)2\u00b72H2O6\/mmm1.98-2.09\u03b5=1.560 \u03c9=1.540[6]Davynecan substitute CO3 for SO4[7]Decrespignyite-(Y)Y4Cu(CO3)4Cl(OH)5\u00b72H2OV4 bending 694, 718 and 746; V2 bending 791, 815, 837 and 849;v3 antisymmetric stretching 1391, 1414, 1489, 1547; also OH stretching[8]light blue[9]DeferniteCa3CO3(OH,Cl)4.H2OHanksiteNa22K(SO4)9(CO3)2ClhexagonalP63\/ma = 10.46 \u00c5c = 21.19 \u00c5; Z = 2iowaiteMg6Fe2(Cl,(CO3)0.5)(OH)16\u00b74H2O[10]KampfiteBa12(Si11Al5)O31(CO3)8Cl5monoclinicCca = 31.2329, b=5.2398, c=9.0966\u03b2 = 106.933\u00b0uniaxial (\u2013), n\u03c9 = 1.642 n\u03b5 = 1.594[11]MarialiteNa4(AlSi3O8)3(Cl2,CO3,SO4)Mineevite-(Y)Na25BaY2(CO3)11(HCO3)4(SO4)2F2Cl[12]NorthupiteNa3Mg(CO3)2CloctahedralFd3Z=161.514v4 bending 714; v3 antisymmetric stretching 1554[8][13][14]PhosgenitePb2CO3Cl2tetragonala=8.15 c=8.87[13]Reederite-(Y)Na15Y2(CO3)9(SO3F)Cl[12]Sakhaite (with Harkerite)Ca48Mg16Al(SiO3OH)4(CO3)16(BO3)28\u00b7(H2O)3(HCl)3or Ca12Mg4(BO3)7(CO3)4Cl(OH)2\u00b7H2O[3]ScapoliteCa3Na5[Al8Si16O48]Cl(CO3)P42\/na=12.07899 c=7.583467 V=1106.443[15]TatarskiteCa6Mg2(SO4)2(CO3)2(OH)4Cl4\u20227H2OorthorhombicBiaxial (-) n\u03b1 = 1.567 n\u03b2 = 1.654 n\u03b3 = 1.722[16]TunisiteNaCa2Al4(CO3)4Cl(OH)8tetragonalP4\/nmma=11.198 c=6.5637 Z=2Vasilyevite(Hg2)10O6I3Br2Cl(CO3)P1 overbara 9.344, b 10.653, c 18.265, \u03b1=93.262 \u03b2=90.548 \u03b3=115.422\u00b0 V=1638.3 Z=29.57Artificial[edit]nameformulacrystal systemspace groupunit cell in \u00c5densitycommentreferenceK5Na2Cu24(CO3)16Cl3(OH)20\u202212H2OcubicF23a=15.463 V=3697.5 Z=23.044dark blue[17]Y8O(OH)15(CO3)3Cl1197.88hexagonalP63a=9.5089 c=14.6730 Z=2 V=1148.973.462[18]Lu8O(OH)15(CO3)3Cl1886.32hexagonalP63a=9.354 c=14.415 V=1092.3 Z=25.689colourless[19]Y3(OH)6(CO3)ClcubicIm3ma=12.66 V=2032 Z=83.035colourless[20]Dy3(OH)6(CO3)ClcubicIm3a=12.4754 V=1941.6 Z=84.687colourless[20]Er3(OH)6(CO3)ClcubicIm3ma=12.4127 V=1912.5 Z=84.857pink[20]K{Mg(H2O)6}2[Ru2(CO3)4Cl2]\u00b74H2O889.06monoclinicP21\/ca=11.6399 b=11.7048 c=11.8493 \u03b2=119.060 V=1411.6 Z=22.092red-brown[21]K2[{Mg(H2O)4}2Ru2(CO3)4(H2O)Cl]Cl2\u00b72H2O880.58orthorhombicFmm2a=14.392 b=15.699 c=10.741 V=2426.8 Z=42.391dark brown[21]trisodium cobalt dicarbonate chlorideNa3Co(CO3)2ClcubicFd3a=13.9959 Z=162.75spin-frustrated antiferromagnetic[3][22]trisodium manganese dicarbonate chlorideNa3Mn(CO3)2Clcubica=14.163brown[23]di-magnesium hexahydrate trihydrogencarbonate chlorideMg2(H2O)6(HCO3)3ClR3ca=8.22215 c=39.5044 V=2312.85 Z=61.61decompose 125\u00a0\u00b0C[2]tripotassium tricalcium selenite tricarbonate chlorideK3Ca3(SeO3)(CO3)3Cl579.97hexagonalP63a=10.543 c=7.060 V=706.0 Z=22.991[24]LiBa9[Si10O25]Cl7(CO3)Z=23.85layer silicate[25][26]Ba3Cl4CO3orthorhombicPnmaa=8.407, b=9.589, c=12.483 Z=4[27]Complexes[edit]The “lanthaballs” are lanthanoid atom clusters held together by carbonate and other ligands. They can form chlorides. Examples are [La13(ccnm)6(CO3)14(H2O)6(phen)18] Cl3(CO3)\u00b725H2O where ccnm is carbamoylcyanonitrosomethanide and phen is 1,10-phenanthroline. Praseodymium (Pr) or cerium (Ce) can substitute for lanthanum (La).[28] Other lanthanide cluster compounds include\u00a0:(H3O)6[Dy76O10(OH)138(OAc)20(L)44(H2O)34]\u20222CO3\u20224Cl2\u2022L\u20222OAc (nicknamed Dy76) and (H3O)6[Dy48O6(OH)84(OAc)4(L)15(hmp)18(H2O)20]\u2022CO3\u202214Cl\u20222H2O (termed Dy48-T) with OAc=acetate, and L=3-furancarboxylate and Hhmp=2,2-bis(hydroxymethyl)propionic acid.[29]Platinum can form complexes with carbonate and chloride ligands, in addition to an amino acid. Examples include the platinum compound [Pt(gluH)Cl(CO3)]2.2H2O gluH=glutamic acid, and Na[Pt(gln)Cl2(CO3)].H2O gln=glutamine.[30]Rhodium complexes include Rh2(bipy)2(CO3)2Cl (bipy=bipyridine)[31]References[edit]^ Harlov, D. E.; Budzyn, B. (December 2008). “The stability of Cl-CO3-scapolite relative to plagioclase + CaCO3 + CaSO4 in the presence of NaCl brines as a function of P-T-XNaCl”. AGUFM. 2008: V31C\u20132156\u20132156. Bibcode:2008AGUFM.V31C2156H.^ a b Dinnebier, Robert E.; Jansen, Martin (2008-12-01). “The Crystal Structure of [Mg2(H2O)6(HCO3)3]+Cl\u2013, Containing a Magnesium-based Hetero-polycation”. Zeitschrift f\u00fcr Naturforschung B. 63 (12): 1347\u20131351. doi:10.1515\/znb-2008-1201. ISSN\u00a01865-7117. S2CID\u00a0196866126.^ a b c d Hazen, Robert M.; Hummer, Daniel R.; Hystad, Grethe; Downs, Robert T.; Golden, Joshua J. (April 2016). “Carbon mineral ecology: Predicting the undiscovered minerals of carbon”. American Mineralogist. 101 (4): 889\u2013906. Bibcode:2016AmMin.101..889H. doi:10.2138\/am-2016-5546. ISSN\u00a00003-004X. S2CID\u00a0741788.^ Pekov, Igor V.; Zubkova, Natalia V.; Yapaskurt, Vasiliy O.; Lykova, Inna S.; Chukanov, Nikita V.; Belakovskiy, Dmitry I.; Britvin, Sergey N.; Turchkova, Anna G.; Pushcharovsky, Dmitry Y. (2019-02-21). “Alexkhomyakovite, K6(Ca2Na)(CO3)5Cl\u22196H2O, a new mineral from the Khibiny alkaline complex, Kola peninsula, Russia”. European Journal of Mineralogy. 31 (1): 135\u2013143. Bibcode:2019EJMin..31..135P. doi:10.1127\/ejm\/2018\/0030-2798. ISSN\u00a00935-1221. S2CID\u00a0134451790.^ Chukanov, Nikita V.; Zubkova, Natalia V.; Pekov, Igor V.; Olysych, Lyudmila V.; Bonaccorsi, Elena; Pushcharovsky, Dmitry YU. (2010-03-18). “Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), a new cancrinite-group mineral from Monte Somma Vesuvio volcanic complex, Italy”. European Journal of Mineralogy. 22 (1): 113\u2013119. Bibcode:2010EJMin..22..113C. doi:10.1127\/0935-1221\/2010\/0022-1983. ISSN\u00a00935-1221.^ Kashayev, A. A.; Feoktistov, G. D.; Petrova, S. V. (July 1983). “Chlormagaluminite (Mg, Fe 2+ ) 4 Al 2 (OH) 12 (Cl, 1\/2 CO 3 ) 2 \u00b72H 2 O-a new mineral of the manasseite-sjogrenite group”. International Geology Review. 25 (7): 848\u2013853. Bibcode:1983IGRv…25..848K. doi:10.1080\/00206818309466774. ISSN\u00a00020-6814.^ BALLIRANO, PAOLO (1998). “CARBONATEGROUPSIN DAWNE:STRUCTURAL AND CRYSTAL.CHEMICAL CONSIDERATIONs” (PDF). The Canadian Mineralogist. 36: 1285\u20131292.^ a b Frost, Ray L.; Palmer, Sara J. (2011-11-15). “Raman spectrum of decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5\u00b72H2O] and its relation with those of other halogenated carbonates including bastnasite, hydroxybastnasite, parisite and northupite”. Journal of Raman Spectroscopy. 42 (11): 2042\u20132048. Bibcode:2011JRSp…42.2042F. doi:10.1002\/jrs.2959.^ Wallwork, K.; Kolitsch, U.; Pring, A.; Nasdala, L. (February 2002). “Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia”. Mineralogical Magazine. 66 (1): 181\u2013188. Bibcode:2002MinM…66..181W. doi:10.1180\/0026461026610021. ISSN\u00a00026-461X. S2CID\u00a04820053.^ Frost, R. L.; Erickson, K. L. (2004). “Thermal decomposition of natural iowaite” (PDF). Journal of Thermal Analysis and Calorimetry. 78 (2): 367\u2013373. doi:10.1023\/B:JTAN.0000046103.00586.61. ISSN\u00a01388-6150. S2CID\u00a097065830.^ “Kampfite: Mineral information, data and localities”. www.mindat.org. Retrieved 2019-11-26.^ a b Harlov, Daniel E.; Aranovich, Leonid (2018-01-30). The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer. ISBN\u00a0978-3-319-61667-4.^ a b Ivan Kostov, Ruslan I. Kostov (2016). “Systematics and crystal genesis of carbonate minerals” (PDF). ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY “ST. IVAN RILSKI”, Part I, Geology and Geophysics. 49: 111\u2013118.^ Batsanov, Stepan S.; Ruchkin, Evgeny D.; Poroshina, Inga A. (2016-08-10). Refractive Indices of Solids. Springer. p.\u00a061. ISBN\u00a0978-981-10-0797-2.^ Antao, S. M.; Hassan, I. (2011-04-01). “COMPLETE Al-Si ORDER IN SCAPOLITE Me37.5, IDEALLY Ca3Na5[Al8Si16O48]Cl(CO3), AND IMPLICATIONS FOR ANTIPHASE DOMAIN BOUNDARIES (APBs)”. The Canadian Mineralogist. 49 (2): 581\u2013586. doi:10.3749\/canmin.49.2.581. ISSN\u00a00008-4476.^ “Tatarskite: Mineral information, data and localities”. www.mindat.org. Retrieved 10 May 2020.^ Sokolova, Elena; Hawthorne, Frank C. (2003). “The Crystal Structure Of An Anthropogenic Cu\u2013k\u2013na\u2013hydro-Hydroxyl\u2013carbonate\u2013chloride From Johanngeorgenstadt, Saxony, Germany”. The Canadian Mineralogist. 41 (4): 929\u2013936. doi:10.2113\/gscanmin.41.4.929.^ Zhang, Yiting; Long, Ying; Dong, Xuehua; Wang, Lei; Huang, Ling; Zeng, Hongmei; Lin, Zhien; Wang, Xin; Zou, Guohong (2019). “Y 8 O(OH) 15 (CO 3 ) 3 Cl: an excellent short-wave UV nonlinear optical material exhibiting an infrequent three-dimensional inorganic cationic framework”. Chemical Communications. 55 (31): 4538\u20134541. doi:10.1039\/C9CC00581A. ISSN\u00a01359-7345. PMID\u00a030924839. S2CID\u00a085566544.^ Cao, Liling; Song, Yunxia; Peng, Guang; Luo, Min; Yang, Yi; Lin, Chen-sheng; Zhao, Dan; Xu, Feng; Lin, Zheshuai; Ye, Ning (2019-03-26). “Refractive Index Modulates Second-Harmonic Responses in RE 8 O(CO 3 ) 3 (OH) 15 X (RE = Y, Lu; X = Cl, Br): Rare-Earth Halide Carbonates as Ultraviolet Nonlinear Optical Materials”. Chemistry of Materials. 31 (6): 2130\u20132137. doi:10.1021\/acs.chemmater.9b00068. ISSN\u00a00897-4756. S2CID\u00a0107652980.^ a b c Wang, Yanyan; Han, Tian; Ding, You-Song; Zheng, Zhiping; Zheng, Yan-Zhen (2016). “Sodalite-like rare-earth carbonates: a study of structural transformation and diluted magnetism”. Dalton Transactions. 45 (3): 1103\u20131110. doi:10.1039\/C5DT03314D. ISSN\u00a01477-9226. PMID\u00a026660232.^ a b Yang, Jian-Hui; Cheng, Ru-Mei; Jia, Yan-Yan; Jin, Jin; Yang, Bing-Bing; Cao, Zhi; Liu, Bin (2016). “Chlorine and temperature directed self-assembly of Mg\u2013Ru 2 ( ii , iii ) carbonates and particle size dependent magnetic properties”. Dalton Transactions. 45 (7): 2945\u20132954. doi:10.1039\/C5DT04463D. ISSN\u00a01477-9226. PMID\u00a026750871.^ Fu, Zhendong (2012). Spin Correlations and Excitations in Spin-frustrated Molecular and Molecule-based Magnets. Forschungszentrum J\u00fclich. pp.\u00a097\u2013165. ISBN\u00a0978-3-89336-797-9.^ Nawa, Kazuhiro; Okuyama, Daisuke; Avdeev, Maxim; Nojiri, Hiroyuki; Yoshida, Masahiro; Ueta, Daichi; Yoshizawa, Hideki; Sato, Taku J. (2018-10-18). “Degenerate ground state in the classical pyrochlore antiferromagnet Na 3 Mn ( CO 3 ) 2 Cl”. Physical Review B. 98 (14): 144426. arXiv:1810.05126. Bibcode:2018PhRvB..98n4426N. doi:10.1103\/PhysRevB.98.144426. ISSN\u00a02469-9950. S2CID\u00a0119245230.^ Schmitz, Dieter (2001). “Synthese, Charakterisierung und Bildungsprinzipien von sauren und neutralen Oxoselenaten(IV) und Oxoselenat(IV)-hydraten” (in German): 182 \u2013 via Fachbereich 8. ^ “LiBa9[Si10O25]Cl7(CO3) (LiBa9Si10[CO3]Cl7O25) Crystal Structure – SpringerMaterials”. materials.springer.com. Retrieved 2019-11-27.^ Il’Inets, A. M.; Nevskii, N. N.; Ilyukhin, V. V.; Belov, N. V. (March 1983). “A new type of infinite silicate radical [Si10O25] in the synthetic compound LiBa9[Si10O25]CI7(CO3)”. SPHD. 28: 213. Bibcode:1983SPhD…28..213I.^ Leyva-Bailen, Patricia; Vaqueiro, Paz; Powell, Anthony V. (September 2009). “Ionothermal synthesis of the mixed-anion material, Ba3Cl4CO3”. Journal of Solid State Chemistry. 182 (9): 2333\u20132337. Bibcode:2009JSSCh.182.2333L. doi:10.1016\/j.jssc.2009.06.019.^ Chesman, Anthony S. R.; Turner, David R.; Langley, Stuart K.; Moubaraki, Boujemaa; Murray, Keith S.; Deacon, Glen B.; Batten, Stuart R. (2015-02-02). “Synthesis and Structure of New Lanthanoid Carbonate “Lanthaballs”“. Inorganic Chemistry. 54 (3): 792\u2013800. doi:10.1021\/ic5016115. ISSN\u00a00020-1669. PMID\u00a025349948.^ Li, Xiao-Yu; Su, Hai-Feng; Li, Quan-Wen; Feng, Rui; Bai, Hui-Yun; Chen, Hua-Yu; Xu, Jian; Bu, Xian-He (22 July 2019). “A Giant Dy76 Cluster: A Fused Bi-Nanopillar Structural Model for Lanthanide Clusters”. Angewandte Chemie International Edition. 58 (30): 10184\u201310188. doi:10.1002\/anie.201903817. PMID\u00a031090998. S2CID\u00a0155089115.^ Shatnawi, Razan Ahmad Mahmoud (November 2013). Synthesis and Characterization of Some Amino Acid Complexes with Metal Ions. Yarmouk University (Article).^ Davidson, G.; Ebsworth, E. A. V. (2007). Spectroscopic Properties of Inorganic and Organometallic Compounds. Royal Society of Chemistry. p.\u00a0294. ISBN\u00a0978-1-84755-506-9. "},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/carbonate-chloride-wikipedia\/#breadcrumbitem","name":"Carbonate chloride – Wikipedia"}}]}]