[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/pseudo-panspermia-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki19\/pseudo-panspermia-wikipedia\/","headline":"Pseudo-panspermia – Wikipedia","name":"Pseudo-panspermia – Wikipedia","description":"From Wikipedia, the free encyclopedia Supported hypothesis for the origin of life Pseudo-panspermia (sometimes called soft panspermia, molecular panspermia or","datePublished":"2014-06-16","dateModified":"2014-06-16","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki19\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki19\/pseudo-panspermia-wikipedia\/","wordCount":7661,"articleBody":"From Wikipedia, the free encyclopediaSupported hypothesis for the origin of lifePseudo-panspermia (sometimes called soft panspermia, molecular panspermia or quasi-panspermia) is a well-supported hypothesis for a stage in the origin of life. The theory first asserts that many of the small organic molecules used for life originated in space (for example, being incorporated in the solar nebula, from which the planets condensed).[1][2] It continues that these organic molecules were distributed to planetary surfaces, where life then emerged on Earth and perhaps on other planets.[1][2] Pseudo-panspermia differs from the fringe theory of panspermia, which asserts that life arrived on Earth from distant planets.Background[edit]Theories of the origin of life have been current since the 5th century BC, when the Greek philosopher Anaxagoras proposed an initial version of panspermia: life arrived on earth from the heavens.[3] In modern times, panspermia has little support amongst mainstream scientists.[4]Interstellar molecules are formed by chemical reactions within very sparse interstellar or circumstellar clouds of dust and gas. Usually this occurs when a molecule becomes ionised, often as the result of an interaction with cosmic rays. This positively charged molecule then draws in a nearby reactant by electrostatic attraction of the neutral molecule’s electrons. Molecules can also be generated by reactions between neutral atoms and molecules, although this process is generally slower.[5] The dust plays a critical role of shielding the molecules from the ionizing effect of ultraviolet radiation emitted by stars.[6] The Murchison meteorite contains the organic molecules uracil and xanthine,[7][8] which must therefore already have been present in the early Solar System, where they could have played a role in the origin of life.[9]Nitriles, key molecular precursors of the RNA World scenario, are among the most abundant chemical families in the universe and have been found in molecular clouds in the center of the Milky Way, protostars of different masses, meteorites and comets, and also in the atmosphere of Titan, the largest moon of Saturn.[10][11]Evidence for the extraterrestrial creation of organic molecules includes both their discovery in various contexts in space, and their laboratory synthesis under extraterrestrial conditions:Extraterrestrial organic molecules found in spaceMoleculeClassBodyNotesGlycineAmino acidCometNASA, 2009[12]mixed aromatic-aliphatic compoundsCosmic dust2011[13][14]GlycolaldehydeSugar-relatedAround a protostarCopenhagen University, 2012[15][16] Precursor of RNA[17]Cyanomethanimine, EthanimineIminesIcy particles in interstellar spacePrecursors of nucleobase adenine, and of amino acid alanine[18]polycyclic aromatic hydrocarbons (PAHs)widespread, 20% of carbon in universeNASA, 2014[19]Glycine,Methylamine,EthylamineAmino acid, aminesComa of comet 67P\/Churyumov-GerasimenkoRosetta Mission, 2016[20]Uracil, NiacinNucleobase, vitamer162173 RyuguHayabusa2, 2023[21][22]Planetary distribution of organic molecules[edit]Organic molecules can then be distributed to planets including Earth both when the planets formed and later. If the materials from which planets formed contained organic molecules, and were not destroyed by heat or other processes, then these would be available for abiogenesis on those planets.Later distribution is by means of bodies such as comets and asteroids. These may fall to the planetary surface as meteorites, releasing any molecules they are carrying as they vaporise on impact or later as they erode. Findings of organic molecules in meteorites include:References[edit]^ a b Klyce, Brig (2001). “Panspermia Asks New Questions”. Retrieved 25 July 2013.^ a b Klyce, Brig (2001). “Panspermia asks new questions”. In Kingsley, Stuart A; Bhathal, Ragbir (eds.). The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III. Proc. SPIE. The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III. Vol.\u00a04273. pp.\u00a011\u201314. Bibcode:2001SPIE.4273…11K. doi:10.1117\/12.435366. S2CID\u00a0122849901.^ Kolb, Vera M.; Clark III, Benton C. (13 July 2020). “10”. Astrobiology for a General Reader: A Question and Answers – Panspermia hypothesis. Cambridge Scholars Publishing. p.\u00a047. ISBN\u00a0978-1-5275-5502-0. Retrieved 3 May 2022. The Panspermia hypothesis states that life exists elsewhere in the universe, and could be distributed far and wide. This idea was first introduced by the ancient Greek philosopher Anaxagoras (5th Century BC), who believed that the universe is made of an infinite number of seeds (“spermata” in Greek). Upon reaching the Earth, these seeds gave rise to life. Anaxagorus introduced the term “Panspermia”, which in Greek means literally “seeds everywhere”.^ May, Andrew (2019). Astrobiology: The Search for Life Elsewhere in the Universe. London. ISBN\u00a0978-1-78578-342-5. OCLC\u00a0999440041. Although they were part of the scientific establishment \u2013 Hoyle at Cambridge and Wickramasinghe at the University of Wales \u2013 their views on the topic were far from mainstream, and panspermia remains a fringe theory^ Dalgarno, A. (2006). “The galactic cosmic ray ionization rate”. Proceedings of the National Academy of Sciences. 103 (33): 12269\u201373. Bibcode:2006PNAS..10312269D. doi:10.1073\/pnas.0602117103. PMC\u00a01567869. PMID\u00a016894166.^ Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995). “The physics of the interstellar medium”. Twentieth Century Physics (second\u00a0ed.). CRC Press. p.\u00a01765. ISBN\u00a0978-0-7503-0310-1.^ Martins, Zita; Botta, Oliver; Fogel, Marilyn L.; Sephton, Mark A.; Glavin, Daniel P.; Watson, Jonathan S.; Dworkin, Jason P.; Schwartz, Alan W.; Ehrenfreund, Pascale (2008). “Extraterrestrial nucleobases in the Murchison meteorite”. Earth and Planetary Science Letters. 270 (1\u20132): 130\u201336. arXiv:0806.2286. Bibcode:2008E&PSL.270..130M. doi:10.1016\/j.epsl.2008.03.026. S2CID\u00a014309508.^ “We may all be space aliens: study”. AFP. 20 August 2009. Archived from the original on June 17, 2008. Retrieved 8 November 2014.^ Martins, Zita; Botta, Oliver; Fogel, Marilyn L.; et\u00a0al. (2008). “Extraterrestrial nucleobases in the Murchison meteorite”. Earth and Planetary Science Letters. 270 (1\u20132): 130\u201336. arXiv:0806.2286. Bibcode:2008E&PSL.270..130M. doi:10.1016\/j.epsl.2008.03.026. S2CID\u00a014309508.^ Rivilla, V\u00edctor M.; Jim\u00e9nez-Serra, Izaskun; Mart\u00edn-Pintado, Jes\u00fas; Colzi, Laura; Tercero, Bel\u00e9n; de Vicente, Pablo; Zeng, Shaoshan; Mart\u00edn, Sergio; Garc\u00eda de la Concepci\u00f3n, Juan; Bizzocchi, Luca; Melosso, Mattia (2022). “Molecular Precursors of the RNA-World in Space: New Nitriles in the G+0.693\u22120.027 Molecular Cloud”. Frontiers in Astronomy and Space Sciences. 9: 876870. arXiv:2206.01053. Bibcode:2022FrASS…9.6870R. doi:10.3389\/fspas.2022.876870. ISSN\u00a02296-987X.^ “Building blocks for RNA-based life abound at center of our galaxy”. EurekAlert!. 2022-07-08. Retrieved 2022-07-11.^ “‘Life chemical’ detected in comet”. NASA. BBC News. 18 August 2009. Retrieved 6 March 2010.^ Chow, Denise (26 October 2011). “Discovery: Cosmic Dust Contains Organic Matter from Stars”. Space.com. Retrieved 26 October 2011.^ Kwok, Sun; Zhang, Yong (2011). “Mixed aromatic\u2013aliphatic organic nanoparticles as carriers of unidentified infrared emission features”. Nature. 479 (7371): 80\u201383. Bibcode:2011Natur.479…80K. doi:10.1038\/nature10542. PMID\u00a022031328. S2CID\u00a04419859.^ Than, Ker (August 29, 2012). “Sugar Found In Space”. National Geographic. Retrieved August 31, 2012.^ “Sweet! Astronomers spot sugar molecule near star”. AP News. August 29, 2012. Retrieved August 31, 2012.^ J\u00f8rgensen, Jes K.; Favre, C\u00e9cile; Bisschop, Suzanne E.; Bourke, Tyler L.; et\u00a0al. (2012). “Detection of the Simplest Sugar, Glycolaldehyde, in a Solar-Type Protostar with Alma”. The Astrophysical Journal. 757 (1): L4. arXiv:1208.5498. Bibcode:2012ApJ…757L…4J. doi:10.1088\/2041-8205\/757\/1\/L4. S2CID\u00a014205612.^ Loomis, Ryan A.; Zaleski, Daniel P.; Steber, Amanda L.; et\u00a0al. (2013). “The Detection of Interstellar Ethanimine (Ch3Chnh) from Observations Taken During the Gbt Primos Survey”. The Astrophysical Journal. 765 (1): L9. arXiv:1302.1121. Bibcode:2013ApJ…765L…9L. doi:10.1088\/2041-8205\/765\/1\/L9. S2CID\u00a0118522676.^ Hoover, Rachel (February 21, 2014). “Need to Track Organic Nano-Particles Across the Universe? NASA’s Got an App for That”. NASA. Retrieved 22 February 2014.^ “Prebiotic chemicals \u2013 amino acid and phosphorus \u2013 in the coma of comet 67P\/Churyumov-Gerasimenko”.^ Strickland, Ashley (2023-03-21). “RNA compound and vitamin B3 found in samples from near-Earth asteroid”. CNN. Retrieved 2023-03-24.^ Oba, Yasuhiro; Koga, Toshiki; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko; Sasaki, Kazunori; Sato, Hajime; Glavin, Daniel P.; Dworkin, Jason P.; Naraoka, Hiroshi; Tachibana, Shogo; Yurimoto, Hisayoshi; Nakamura, Tomoki; Noguchi, Takaaki; Okazaki, Ryuji (2023-03-21). “Uracil in the carbonaceous asteroid (162173) Ryugu”. Nature Communications. 14 (1): 1292. doi:10.1038\/s41467-023-36904-3. ISSN\u00a02041-1723. PMC\u00a010030641. PMID\u00a036944653.^ “NASA Cooks Up Icy Organics to Mimic Life’s Origins”. Space.com. September 20, 2012. Retrieved September 22, 2012.^ Gudipati, Murthy S.; Yang, Rui (2012). “In-Situ Probing of Radiation-Induced Processing of Organics in Astrophysical Ice Analogs \u2013 Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies”. The Astrophysical Journal. 756 (1): L24. Bibcode:2012ApJ…756L..24G. doi:10.1088\/2041-8205\/756\/1\/L24. S2CID\u00a05541727.^ Marlaire, Ruth (3 March 2015). “NASA Ames Reproduces the Building Blocks of Life in Laboratory”. NASA. Retrieved 5 March 2015.^ Krasnokutski, S. A.; Chuang, K. J.; J\u00e4ger, C.; et\u00a0al. (2022). “A pathway to peptides in space through the condensation of atomic carbon”. Nature Astronomy. 6 (3): 381\u2013386. arXiv:2202.12170. Bibcode:2022NatAs…6..381K. doi:10.1038\/s41550-021-01577-9. S2CID\u00a0246768607.^ Callahan, M. P.; Smith, K. E.; Cleaves, H. J.; et\u00a0al. (2011). “Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases”. Proceedings of the National Academy of Sciences. 108 (34): 13995\u201398. Bibcode:2011PNAS..10813995C. doi:10.1073\/pnas.1106493108. PMC\u00a03161613. PMID\u00a021836052.^ Steigerwald, John (8 August 2011). “NASA Researchers: DNA Building Blocks Can Be Made in Space”. NASA. Retrieved 10 August 2011.^ Furukawa, Yoshihiro; Chikaraishi, Yoshito; Ohkouchi, Naohiko; et\u00a0al. (13 November 2019). “Extraterrestrial ribose and other sugars in primitive meteorites”. Proceedings of the National Academy of Sciences. 116 (49): 24440\u201345. Bibcode:2019PNAS..11624440F. doi:10.1073\/pnas.1907169116. PMC\u00a06900709. PMID\u00a031740594.^ Oba, Yasuhiro; et\u00a0al. (26 April 2022). “Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites”. Nature Communications. 13 (2008): 2008. Bibcode:2022NatCo..13.2008O. doi:10.1038\/s41467-022-29612-x. PMC\u00a09042847. PMID\u00a035473908.^ “Life On Earth”. NASA-JPL. JPL. Retrieved 14 September 2022.^ “NASA Open Data Portal”. NASA dot gov. NASA. Retrieved 14 September 2022. "},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki19\/pseudo-panspermia-wikipedia\/#breadcrumbitem","name":"Pseudo-panspermia – Wikipedia"}}]}]