[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki2\/borohydride-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki2\/borohydride-wikipedia\/","headline":"Borohydride – Wikipedia","name":"Borohydride – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Borohydride refers to the anion [BH4]\u2212, which is also called tetrahydroborate, and its","datePublished":"2020-09-14","dateModified":"2020-09-14","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki2\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki2\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/4\/46\/Borohydride-3D-balls.png\/140px-Borohydride-3D-balls.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/4\/46\/Borohydride-3D-balls.png\/140px-Borohydride-3D-balls.png","height":"143","width":"140"},"url":"https:\/\/wiki.edu.vn\/en\/wiki2\/borohydride-wikipedia\/","wordCount":3812,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Borohydride refers to the anion [BH4]\u2212, which is also called tetrahydroborate, and its salts.[1] Borohydride or hydroborate is also the term used for compounds containing [BH4\u2212nXn]\u2212, where n is an integer from 0 to 3, for example cyanoborohydride or cyanotrihydroborate [BH3(CN)]\u2212 and triethylborohydride or triethylhydroborate [BH(CH2CH3)3]\u2212. Borohydrides find wide use as reducing agents in organic synthesis. The most important borohydrides are lithium borohydride and sodium borohydride, but other salts are well known (see Table).[2] Tetrahydroborates are also of academic and industrial interest in inorganic chemistry.[3] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Table of ContentsHistory[edit]Structure[edit]Potential applications[edit]Coordination complexes[edit]Decomposition[edit]References[edit]External links[edit]History[edit]Alkali metal borohydrides were first described in 1940 by Hermann Irving Schlesinger and Herbert C. Brown. They synthesized lithium borohydride Li[BH4] from diborane B2H6:[4][5]2 MH + B2H6 \u2192 2 M[BH4], where M = Li, Na, K, Rb, Cs, etc.Current methods involve reduction of trimethyl borate with sodium hydride.[2]Structure[edit]In the borohydride anion and most of its modifications, boron has a tetrahedral structure.[6] The reactivity of the B\u2212H bonds depends on the other ligands. Electron-releasing ethyl groups as in triethylborohydride render the B\u2212H center highly nucleophilic. In contrast, cyanoborohydride is a weaker reductant owing to the electron-withdrawing cyano substituent. The countercation also influences the reducing power of the reagent. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Selected properties of various borohydride saltsBorohydride[CAS no.]molecular weight(g\/mol)Hydrogen densityDensity(g\/cm3)melting point(\u00b0C)Solubility in water(g\/100\u00a0mL at 25\u00a0\u00b0C)Solubility in MeOH(g\/100\u00a0mL, 25\u00a0\u00b0C)Solubility in Et2O(g\/100\u00a0mL, 25\u00a0\u00b0C)Solubility in THF(g\/100\u00a0mL at 25\u00a0\u00b0C)Li[BH4][16949-15-8]21.7818.50.6628020.9decomposes (44 in EtOH)4.322.5Na[BH4][16940-66-2]37.8310.61.075055516.4 (at 20\u00a0\u00b0C)insoluble0.1 (at 20\u00a0\u00b0C)Na[BH3(CN)][25895-60-7]62.846.41.20240 with decompositiontolerated[7]217insoluble36K[BH4][13762-51-1]53.947.41.17585 (under H2)19insolubleinsolubleinsolubleLi[BHEt3][22560-16-3]105.940.95unknownunknowndecomposesdecomposesN\/Ahigh (supplied commercially)Sodium borohydride is the borohydride that is produced on the largest scale industrially, estimated at 5000 tons\/year in 2002. The main use is for the reduction of sulfur dioxide to give sodium dithionite:Na[BH4] + 8 NaOH + 8 SO2 \u2192 4 Na2S2O4 + NaBO2 + 6 H2ODithionite is used to bleach wood pulp.[2] Sodium borohydride is also used to reduce aldehydes and ketones in the production of pharmaceuticals including chloramphenicol, thiophenicol, vitamin A, atropine, and scopolamine, as well as many flavorings and aromas.Potential applications[edit]Because of their high hydrogen content, borohydride complexes and salts have been of interest in the context of hydrogen storage.[8] Reminiscent of related work on ammonia borane, challenges are associated with slow kinetics and low yields of hydrogen as well as problems with regeneration of the parent borohydrides.Coordination complexes[edit] In its coordination complexes, the borohydride ion is bound to the metal by means of one to three bridging hydrogen atoms.[9][3][10] In most such compounds, the [BH4]\u2212 ligand is bidentate. Some homoleptic borohydride complexes are volatile. One example is uranium borohydride.Metal borohydride complexes can often be prepared by a simple salt elimination reaction:[11]TiCl4 + 4 Li[BH4] + Et2O (solvent) \u2192 Ti[BH4]4\u00b7Et2O + 4 LiClDecomposition[edit]Some metal tetrahydroborates transform on heating to give metal borides. When the borohydride complex is volatile, this decomposition pathway is the basis of chemical vapor deposition (CVD), a way of depositing thin films of metal borides.[12] For example, zirconium diboride ZrB2 and hafnium diboride HfB2 can be prepared through CVD of the zirconium(IV) tetrahydroborate Zr[BH4]4 and hafnium(IV) tetrahydroborate Hf[BH4]4:[12]M[BH4]4 \u2192 MB2 + B2H6 + 5 H2Metal diborides find uses as coatings because of their hardness, high melting point, strength, resistance to wear and corrosion, and good electrical conductivity.[12]References[edit]^ “Tetrahydroborate”. Chemspider.com. Retrieved 26 February 2013.^ a b c Rittmeyer, P.; Wietelmann, U. “Hydrides”. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002\/14356007.a13_199.^ a b Makhaev, V. D. (2000). “Borohydride”. Russ. Chem. Rev. (69): 727\u2013746. doi:10.1070\/RC2000v069n09ABEH000580.^ Schlesinger, H. C.; Brown, H. R. (1940). “Metallo Borohydrides. III. Lithium Borohydride”. J. Am. Chem. Soc. 62 (12): 3429\u20133435. doi:10.1021\/ja01869a039.^ Schlesinger, H. C.; Brown, H. R.; Hoekstra, L. R. (1953). “Reactions of Diborane with Alkali Metal Hydrides and Their Addition Compounds. New Syntheses of Borohydrides. Sodium and Potassium Borohydrides”. J. Am. Chem. Soc. 75: 199\u2013204. doi:10.1021\/ja01097a053.^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd\u00a0ed.). Butterworth-Heinemann. ISBN\u00a0978-0-08-037941-8.^ Hutchins, Robert O.; Hutchins, MaryGail K.; Crawley, Matthew L. (2007). “Sodium Cyanoborohydride”. Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002\/047084289X.rs059.pub2. ISBN\u00a0978-0471936237.^ Jaro\u0144, Tomasz; Wegner, Wojciech; Grochala, Wojciech (17 August 2018). “M[Y(BH4)4] and M2Li[Y(BH4)6\u2212xClx] (M = Rb, Cs): new borohydride derivatives of yttrium and their hydrogen storage properties”. Dalton Transactions. 42 (19): 6886\u201393. doi:10.1039\/C3DT33048F. PMID\u00a023503711.^ Marks, T. J.; Kolb, J. R. (1977). “Borohydride”. Chem. Rev. 77: 263. doi:10.1021\/cr60306a004.^ Besora, M.; Lled\u00f3s, A. (2008). “Coordination Modes and Hydride Exchange Dynamics in Transition Metal Tetrahydroborate Complexes”. Structure and Bonding. 130: 149\u2013202. doi:10.1007\/430_2007_076. ISBN\u00a0978-3-540-78633-7.^ Franz, H.; Fusstetter, H.; N\u00f6th, H. (1976). “Borohydride”. Z. Anorg. Allg. Chem. 427: 97\u2013113. doi:10.1002\/zaac.654270202.^ a b c Jensen, J. A.; Gozum, J. E.; Pollina, D. M.; Girolami, G. S. (1988). “Titanium, Zirconium, and Hafnium tetrahydroborates as “tailored” CVD precursors for metal diboride thin films”. J. Am. Chem. Soc. 110 (5): 1643\u20131644. doi:10.1021\/ja00213a058.External links[edit] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki2\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki2\/borohydride-wikipedia\/#breadcrumbitem","name":"Borohydride – Wikipedia"}}]}]