[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/nicotinamide-mononucleotide-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki21\/nicotinamide-mononucleotide-wikipedia\/","headline":"Nicotinamide mononucleotide – Wikipedia","name":"Nicotinamide mononucleotide – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia Nicotinamide mononucleotide Names IUPAC name after-content-x4 3-Carbamoyl-1-[5-O-(hydroxyphosphinato)-\u03b2-D-ribofuranosyl]pyridinium after-content-x4 Preferred IUPAC name [(2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate","datePublished":"2017-02-28","dateModified":"2017-02-28","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki21\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/a\/aa\/Nicotinamide_mononucleotide.svg\/220px-Nicotinamide_mononucleotide.svg.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/a\/aa\/Nicotinamide_mononucleotide.svg\/220px-Nicotinamide_mononucleotide.svg.png","height":"128","width":"220"},"url":"https:\/\/wiki.edu.vn\/en\/wiki21\/nicotinamide-mononucleotide-wikipedia\/","wordCount":5464,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopediaNicotinamide mononucleotideNamesIUPAC name (adsbygoogle = window.adsbygoogle || []).push({});after-content-x43-Carbamoyl-1-[5-O-(hydroxyphosphinato)-\u03b2-D-ribofuranosyl]pyridinium (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Preferred IUPAC name[(2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphateOther namesNicotinamide ribonucleoside 5\u2032-phosphateNicotinamide D-ribonucleotide\u03b2-Nicotinamide ribose monophosphateNicotinamide nucleotideIdentifiers3570187ChEBIChEMBLChemSpiderECHA InfoCard100.012.851 EC NumberKEGGUNIIInChI=1S\/C11H15N2O8P\/c12-10(16)6-2-1-3-13(4-6)11-9(15)8(14)7(21-11)5-20-22(17,18)19\/h1-4,7-9,11,14-15H,5H2,(H3-,12,16,17,18,19)\/t7-,8-,9-,11-\/m1\/s1 (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Key:\u00a0DAYLJWODMCOQEW-TURQNECASA-Nc1cc(c[n+](c1)[C@H]2[C@@H]([C@@H]([C@H](O2)COP(=O)(O)[O-])O)O)C(=O)NPropertiesC11H15N2O8PMolar mass334.221\u00a0g\u00b7mol\u22121Except where otherwise noted, data are given for materials in their standard state (at 25\u00a0\u00b0C [77\u00a0\u00b0F], 100\u00a0kPa).Chemical compoundNicotinamide mononucleotide (\u201cNMN\u201d and \u201c\u03b2-NMN\u201d) is a nucleotide derived from ribose, nicotinamide, nicotinamide riboside and niacin.[1] In humans, several enzymes use NMN to generate nicotinamide adenine dinucleotide (NADH).[1] In mice, it has been proposed that NMN is absorbed via the small intestine within 10 minutes of oral uptake and converted to nicotinamide adenine dinucleotide (NAD+) through the Slc12a8 transporter.[2] However, this observation has been challenged,[3] and the matter remains unsettled.[4]Because NADH is a cofactor for processes inside mitochondria, for sirtuins and PARP, NMN has been studied in animal models as a potential neuroprotective and anti-aging agent.[5][6] The reversal of aging at the cellular level by inhibiting mitochondrial decay in presence of increased levels of NAD+ makes it popular among anti-aging products.[7] Dietary supplement companies have aggressively marketed NMN products, claiming those benefits.[8] However, no human studies to date have properly proven its anti-aging effects. Single-dose administration of up to 500 mg was shown safe in men in a study at Keio University School of Medicine, Shinjuku, Tokyo, Japan.[9] One 2021 clinical trial found that NMN improved muscular insulin sensitivity in prediabetic women,[10] while another found that it improved aerobic capacity in amateur runners.[11]NMN is vulnerable to extracellular degradation by CD38 enzyme,[12] which can be inhibited by compounds such as CD38-IN-78c.[13]Dietary sources[edit]NMN is found in fruits and vegetables such as edamame, broccoli, cabbage, cucumber and avocado at a concentration of about 1 mg per 100g.[14][15][16]References[edit]^ a b Bogan KL, Brenner C (2008). “Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition”. Annual Review of Nutrition. 28: 115\u201330. doi:10.1146\/annurev.nutr.28.061807.155443. PMID\u00a018429699.^ Grozio, A; Mills, KF; Yoshino, J; Bruzzone, S; Sociali, G; Tokizane, K; Lei, HC; Cunningham, R; Sasaki, Y; Migaud, ME; Imai, SI (January 2019). “Slc12a8 is a nicotinamide mononucleotide transporter”. Nature Metabolism. 1 (1): 47\u201357. doi:10.1038\/s42255-018-0009-4. PMC\u00a06530925. PMID\u00a031131364.^ Schmidt, MS; Brenner, C (July 2019). “Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter”. Nature Metabolism. 1 (7): 660\u2013661. doi:10.1038\/s42255-019-0085-0. PMID\u00a032694648. S2CID\u00a0203899191.^ Chini, CCS; Zeidler, JD; Kashyap, S; Warner, G; Chini, EN (1 June 2021). “Evolving concepts in NAD+ metabolism”. Cell Metabolism. 33 (6): 1076\u20131087. doi:10.1016\/j.cmet.2021.04.003. PMC\u00a08172449. PMID\u00a033930322.^ Brazill JM, Li C, Zhu Y, Zhai RG (June 2017). “+ synthase\u2026 It’s a chaperone\u2026 It’s a neuroprotector”. Current Opinion in Genetics & Development. 44: 156\u2013162. doi:10.1016\/j.gde.2017.03.014. PMC\u00a05515290. PMID\u00a028445802.^ Mills, Kathryn F.; Yoshida, Shohei; Stein, Liana R.; Grozio, Alessia; Kubota, Shunsuke; Sasaki, Yo; Redpath, Philip; Migaud, Marie E.; Apte, Rajendra S.; Uchida, Koji; Yoshino, Jun; Imai, Shin-Ichiro (13 December 2016). “Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice”. Cell Metabolism. 24 (6): 795\u2013806. doi:10.1016\/j.cmet.2016.09.013. PMC\u00a05668137. PMID\u00a028068222.^ Nadeeshani, Harshani; Li, Jinyao; Ying, Tianlei; Zhang, Baohong; Lu, Jun (1 March 2022). “Nicotinamide mononucleotide (NMN) as an anti-aging health product \u2013 Promises and safety concerns”. Journal of Advanced Research. 37: 267\u2013278. doi:10.1016\/j.jare.2021.08.003. ISSN\u00a02090-1232. PMID\u00a035499054. S2CID\u00a0238647478.^ Stipp D (March 11, 2015). “Beyond Resveratrol: The Anti-Aging NAD Fad”. Scientific American Blog Network.^ Irie, Junichiro; Inagaki, Emi; Fujita, Masataka; Nakaya, Hideaki; Mitsuishi, Masanori; Yamaguchi, Shintaro; Yamashita, Kazuya; Shigaki, Shuhei; Ono, Takashi; Yukioka, Hideo; Okano, Hideyuki (2020). “Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men”. Endocrine Journal. 67 (2): 153\u201360. doi:10.1507\/endocrj.EJ19-0313. ISSN\u00a00918-8959. PMID\u00a031685720.^ Yoshino M, Yoshino J, Kayser BD, Patti GJ, Franczyk MP, et\u00a0al. (June 2021). “Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women”. Science. 372 (6547): 1224\u201329. doi:10.1126\/science.abe9985. PMC\u00a08550608. PMID\u00a033888596.^ Liao, B; Zhao, Y; Wang, D; Zhang, X; Hao, X; Hu, M (2021). ““Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study”“. Journal of the International Society of Sports Nutrition. 18 (1): 54. doi:10.1186\/s12970-021-00442-4. PMC\u00a08265078. PMID\u00a034238308.^ Cambronne XA, Kraus WL (October 2020). “+ Synthesis and Functions in Mammalian Cells”. Trends in Biochemical Sciences. 45 (10): 858\u201373. doi:10.1016\/j.tibs.2020.05.010. PMC\u00a07502477. PMID\u00a032595066.^ Tarrag\u00f3 MG, Chini CC, Kanamori KS, Warner GM, Caride A, et\u00a0al. (May 2018). “A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline”. Cell Metab. 27 (5): 1081\u201395.e10. doi:10.1016\/j.cmet.2018.03.016. PMC\u00a05935140. PMID\u00a029719225.^ Mills, KF; Yoshida, S; Stein, LR; Grozio, A; Kubota, S; Sasaki, Y; Redpath, P; Migaud, ME; Apte, RS; Uchida, K; Yoshino, J; Imai, SI (13 December 2016). “Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice”. Cell Metabolism. 24 (6): 795\u2013806. doi:10.1016\/j.cmet.2016.09.013. PMC\u00a05668137. PMID\u00a028068222.^ Ryan, Finn (2016-12-06). “5 Anti-Aging Food Types You Should Already Be Eating”. Bicycling. Retrieved 2022-01-20.^ “Scientists identify new fuel-delivery route for cells”. Washington University School of Medicine in St. Louis. 2019-01-07. Retrieved 2022-01-20. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/nicotinamide-mononucleotide-wikipedia\/#breadcrumbitem","name":"Nicotinamide mononucleotide – Wikipedia"}}]}]