[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/pegasus-workflow-management-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki21\/pegasus-workflow-management-wikipedia\/","headline":"Pegasus (workflow management) – Wikipedia","name":"Pegasus (workflow management) – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Pegasus is an open-source workflow management system.[1][2][3] It provides the necessary abstractions for","datePublished":"2015-09-25","dateModified":"2015-09-25","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki21\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki21\/pegasus-workflow-management-wikipedia\/","wordCount":1656,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Pegasus is an open-source workflow management system.[1][2][3] It provides the necessary abstractions for scientists to create scientific workflows[4] and allows for transparent execution of these workflows on a range of computing platforms including high performance computing clusters, clouds, and national cyberinfrastructure.[5][6] In Pegasus, workflows are described abstractly as directed acyclic graphs (DAGs) using a provided API for Jupyter Notebooks, Python, R, or Java.[7] During execution, Pegasus translates the constructed abstract workflow into an executable workflow[8][9] which is executed and managed by HTCondor.[10][11]Pegasus is being used in a number of different disciplines including astronomy, gravitational-wave physics, bioinformatics, earthquake engineering, and helioseismology.[12] Notably, the LIGO Scientific Collaboration has used it to directly detect a gravitational wave for the first time.[8][13][14] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Table of ContentsArea of applications[edit]History[edit]See also[edit]References[edit]Area of applications[edit]Application examples:[5][6]Gravitational-Wave PhysicsEarthquake ScienceBioinformaticsWorkflows for Volcanic Mass FlowsDiffusion Image Processing and AnalysisSpallation Neutron Source (SNS)History[edit]The development of Pegasus started in 2001. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4See also[edit]References[edit]^ E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger, “Future Generation Computer Systems”, Elsevier; 46, pp.\u00a017-35 (2015)^ E.A. Huerta, R. Haas, E. Fajardo, D.S. Katz, S. Anderson, P. Couvares ,J. Willis, T. Bouvet, J. Enos, W.T.C. Kramer, H.W. Leong, and D. Wheeler, “BOSS-LDG: A Novel Computational Framework That Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery”, 2017 IEEE 13th International Conference on e-Science (e-Science); pp.\u00a0335-344 (2017)^ B. Riedel, B. Bauermeister, L. Bryant, J. Conrad, P. de Perio, R. W. Gardner ,L. Grandi, F. Lombardi, A. Rizzo, G. Sartorelli, M. Selvi, E. Shockley, J. Stephen, S. Thapa, and C. Tunnell “Distributed Data and Job Management for the XENON1T Experiment”, PEARC ’18: Proceedings of the Practice and Experience on Advanced Research Computing;9, pp.\u00a01-8 (2018)^ G. Amalarethinam, T. Lucia, A. Beena, \u201cScheduling Framework for Regular Scientific Workflows in Cloud\u201d, International Journal of Applied Engineering Research; 10, no.\u00a082 (2015)^ a b E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, B. G. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, \u201cPegasus: a Framework for Mapping Complex Scientific Workflows onto Distributed Systems\u201d, Scientific Programming; 13, pp.\u00a019 (2005)^ a b The Scientific Workflow Integrity with Pegasus (SWIP), byCenter for Applied Cybersecurity Research; published 16 September 2016; retrieved 1 May 2020^ D. Weitzel, B. Bockelman, D. Brown, P. Couvares, F. W\u00fcrthwein, and E.F. Hernandez, \u201cData Access for LIGO on the OSG\u201d, Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact – PEARC17; 24, no.\u00a01-6 (2017)^ a b “Testing LIGO’s Sensitivity”. Research.gov. September 1, 2007. Retrieved April 30, 2020.{{cite web}}: CS1 maint: url-status (link)^ Duncan Brown and Ewa Deelman, “Looking for gravitational waves: A computing perspective”, at Science Node; published June 8, 2011; retrieved April 30, 2020^ $1M NSF award goes to IU-led data integrity project, by Indiana University; published 16 September 2016; retrieved 1 May 2020^ Brian Mattmiller, “High Throughput Computing helps LIGO confirm Einstein’s last unproven theory”, at Morgridge Institute for Research; published March 7, 2016; retrieved May 1, 2020^ Sanden Totten, “Caltech Wasn’t the Only SoCal School Helping Discover Gravitational Waves”, at KPCC; published 11 February 2016; retrieved May 1, 2020^ D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson, J. McNabb, \u201cA Case Study on the Use of Workflow Technologies for Scientific Analysis: Gravitational Wave Data Analysis. In: I.J Taylor, E. Deelman, D.B. Gannon, M. Shields (eds) Workflows for e-Science\u201d, Springer, London; 13, pp.\u00a039-59 (2007)^ D. Davis, T. Massinger, A. Lundgren, J.C. Driggers, A.L. Urban, and L. Nuttall, \u201cImproving the sensitivity of Advanced LIGO using noise subtraction\u201d, Classical and Quantum Gravity; 36, no.\u00a05 (2019) (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki21\/pegasus-workflow-management-wikipedia\/#breadcrumbitem","name":"Pegasus (workflow management) – Wikipedia"}}]}]