[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/2019\/04\/28\/relaxin-insulin-like-family-peptide-receptor-1\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/2019\/04\/28\/relaxin-insulin-like-family-peptide-receptor-1\/","headline":"Relaxin\/insulin-like family peptide receptor 1","name":"Relaxin\/insulin-like family peptide receptor 1","description":"From Wikipedia, the free encyclopedia Protein-coding gene in the species Homo sapiens Relaxin\/insulin-like family peptide receptor 1, also known as","datePublished":"2019-04-28","dateModified":"2019-04-28","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/4\/48\/PDB_2jm4_EBI.png\/180px-PDB_2jm4_EBI.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/4\/48\/PDB_2jm4_EBI.png\/180px-PDB_2jm4_EBI.png","height":"135","width":"180"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/2019\/04\/28\/relaxin-insulin-like-family-peptide-receptor-1\/","wordCount":6470,"articleBody":"From Wikipedia, the free encyclopediaProtein-coding gene in the species Homo sapiensRelaxin\/insulin-like family peptide receptor 1, also known as RXFP1, is a human G protein coupled receptor that is one of the relaxin receptors.[5] It is a rhodopsin-like GPCR which is unusual in this class as it contains a large extracellular binding and signalling domain.[6] Some reports suggest that RXFP1 forms homodimers,[7][8] however the most recent evidence indicates that relaxin binds a non-homodimer of RXFP1.[9][10]Table of ContentsSee also[edit]References[edit]Further reading[edit]External links[edit]See also[edit]References[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000171509 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000034009 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Entrez Gene: RXFP1 relaxin\/insulin-like family peptide receptor 1”.^ Sethi A, Bruell S, Patil N, Hossain MA, Scott DJ, Petrie EJ, et\u00a0al. (April 2016). “The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1”. Nature Communications. 7 (1): 11344. doi:10.1038\/ncomms11344. PMC\u00a04837482. PMID\u00a027088579.^ Svendsen AM, Zalesko A, K\u00f8nig J, Vrecl M, Heding A, Kristensen JB, et\u00a0al. (December 2008). “Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1” (PDF). Molecular and Cellular Endocrinology. 296 (1\u20132): 10\u20137. doi:10.1016\/j.mce.2008.07.014. PMID\u00a018723073. S2CID\u00a032739782.^ Kern A, Hubbard D, Amano A, Bryant-Greenwood GD (March 2008). “Cloning, expression, and functional characterization of relaxin receptor (leucine-rich repeat-containing g protein-coupled receptor 7) splice variants from human fetal membranes”. Endocrinology. 149 (3): 1277\u201394. doi:10.1210\/en.2007-1348. PMC\u00a02275365. PMID\u00a018079195.^ Hoare BL, Bruell S, Sethi A, Gooley PR, Lew MJ, Hossain MA, et\u00a0al. (January 2019). “Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis”. iScience. 11: 93\u2013113. doi:10.1016\/j.isci.2018.12.004. PMC\u00a06309025. PMID\u00a030594862.^ Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RA (August 2019). “Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis”. Pharmacology Research & Perspectives. 7 (4): e00513. doi:10.1002\/prp2.513. PMC\u00a06667744. PMID\u00a031384473.Further reading[edit]Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ (May 2005). “Receptors for relaxin family peptides”. Annals of the New York Academy of Sciences. 1041: 61\u201376. doi:10.1196\/annals.1282.010. PMID\u00a015956688. S2CID\u00a01185573.Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ (March 2006). “International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides”. Pharmacological Reviews. 58 (1): 7\u201331. doi:10.1124\/pr.58.1.9. PMID\u00a016507880. S2CID\u00a07466039.Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, et\u00a0al. (August 2000). “The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7”. Molecular Endocrinology. 14 (8): 1257\u201371. doi:10.1210\/me.14.8.1257. PMID\u00a010935549.Bartsch O, Bartlick B, Ivell R (September 2001). “Relaxin signalling links tyrosine phosphorylation to phosphodiesterase and adenylyl cyclase activity”. Molecular Human Reproduction. 7 (9): 799\u2013809. doi:10.1093\/molehr\/7.9.799. PMID\u00a011517286.Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (January 2002). “Activation of orphan receptors by the hormone relaxin”. Science. 295 (5555): 671\u20134. doi:10.1126\/science.1065654. PMID\u00a011809971. S2CID\u00a032693420.Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, Hsueh AJ (March 2003). “H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2”. The Journal of Biological Chemistry. 278 (10): 7855\u201362. doi:10.1074\/jbc.M212457200. PMID\u00a012506116.Ivell R, Balvers M, Pohnke Y, Telgmann R, Bartsch O, Milde-Langosch K, et\u00a0al. (November 2003). “Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates”. Reproductive Biology and Endocrinology. 1: 114. doi:10.1186\/1477-7827-1-114. PMC\u00a0293425. PMID\u00a014633277.Luna JJ, Riesewijk A, Horcajadas JA, Van Os RD, Dom\u00ednguez F, Mosselman S, et\u00a0al. (February 2004). “Gene expression pattern and immunoreactive protein localization of LGR7 receptor in human endometrium throughout the menstrual cycle”. Molecular Human Reproduction. 10 (2): 85\u201390. doi:10.1093\/molehr\/gah019. PMID\u00a014742692.Bond CP, Parry LJ, Samuel CS, Gehring HM, Lederman FL, Rogers PA, Summers RJ (July 2004). “Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle”. The Journal of Clinical Endocrinology and Metabolism. 89 (7): 3477\u201385. doi:10.1210\/jc.2003-030798. PMID\u00a015240635.Liu C, Chen J, Kuei C, Sutton S, Nepomuceno D, Bonaventure P, Lovenberg TW (January 2005). “Relaxin-3\/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7”. Molecular Pharmacology. 67 (1): 231\u201340. doi:10.1124\/mol.104.006700. PMID\u00a015465925. S2CID\u00a025164369.Scott DJ, Layfield S, Riesewijk A, Morita H, Tregear GW, Bathgate RA (November 2004). “Identification and characterization of the mouse and rat relaxin receptors as the novel orthologues of human leucine-rich repeat-containing G-protein-coupled receptor 7”. Clinical and Experimental Pharmacology & Physiology. 31 (11): 828\u201332. doi:10.1111\/j.1440-1681.2004.04075.x. PMID\u00a015566402. S2CID\u00a022463239.B\u00fcllesbach EE, Schwabe C (April 2005). “The trap-like relaxin-binding site of the leucine-rich G-protein-coupled receptor 7”. The Journal of Biological Chemistry. 280 (14): 14051\u20136. doi:10.1074\/jbc.M500030200. PMID\u00a015695505.Tang M, Mazella J, Zhu HH, Tseng L (April 2005). “Ligand activated relaxin receptor increases the transcription of IGFBP-1 and prolactin in human decidual and endometrial stromal cells”. Molecular Human Reproduction. 11 (4): 237\u201343. doi:10.1093\/molehr\/gah149. PMID\u00a015722441.Hopkins EJ, Bathgate RA, Gooley PR (May 2005). “The human LGR7 low-density lipoprotein class A module requires calcium for structure”. Annals of the New York Academy of Sciences. 1041: 27\u201334. doi:10.1196\/annals.1282.006. PMID\u00a015956684. S2CID\u00a012876694.Bond CP, Parry LJ, Samuel CS, Gehring HM, Lederman FL, Rogers PA, Summers RJ (May 2005). “Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle”. Annals of the New York Academy of Sciences. 1041: 136\u201343. doi:10.1196\/annals.1282.020. PMID\u00a015956698. S2CID\u00a038242216.Halls ML, Bathgate RA, Summers RJ (May 2005). “Signal switching after stimulation of LGR7 receptors by human relaxin 2”. Annals of the New York Academy of Sciences. 1041: 288\u201391. doi:10.1196\/annals.1282.042. PMID\u00a015956719. S2CID\u00a042606513.Muda M, He C, Martini PG, Ferraro T, Layfield S, Taylor D, et\u00a0al. (August 2005). “Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity”. Molecular Human Reproduction. 11 (8): 591\u2013600. doi:10.1093\/molehr\/gah205. PMID\u00a016051677.PDB gallery2jm4: The solution NMR structure of the relaxin (RXFP1) receptor LDLa module.External links[edit]This article incorporates text from the United States National Library of Medicine, which is in the public domain. "},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/2019\/04\/28\/relaxin-insulin-like-family-peptide-receptor-1\/#breadcrumbitem","name":"Relaxin\/insulin-like family peptide receptor 1"}}]}]