General covariant transformations – Wikipedia

before-content-x4

From Wikipedia, the free encyclopedia

after-content-x4

Symmetries in a gravitational theory

In physics, general covariant transformations are symmetries of gravitation theory on a world manifold

X{displaystyle X}

. They are gauge transformations whose parameter functions are vector fields on

X{displaystyle X}

. From the physical viewpoint, general covariant transformations are treated as particular (holonomic) reference frame transformations in general relativity. In mathematics, general covariant transformations are defined as particular automorphisms of so-called natural fiber bundles.

Mathematical definition[edit]

Let

π:YX{displaystyle pi :Yto X}

be a fibered manifold with local fibered coordinates

after-content-x4
(xλ,yi){displaystyle (x^{lambda },y^{i}),}

. Every automorphism of

Y{displaystyle Y}

is projected onto a diffeomorphism of its base

X{displaystyle X}

. However, the converse is not true. A diffeomorphism of

X{displaystyle X}

need not give rise to an automorphism of

Y{displaystyle Y}

.

In particular, an infinitesimal generator of a one-parameter Lie group of automorphisms of

Y{displaystyle Y}

is a projectable vector field

on

Y{displaystyle Y}

. This vector field is projected onto a vector field

τ=uλλ{displaystyle tau =u^{lambda }partial _{lambda }}

on

X{displaystyle X}

, whose flow is a one-parameter group of diffeomorphisms of

X{displaystyle X}

. Conversely, let

τ=τλλ{displaystyle tau =tau ^{lambda }partial _{lambda }}

be a vector field on

X{displaystyle X}

. There is a problem of constructing its lift to a projectable vector field on

Y{displaystyle Y}

projected onto

τ{displaystyle tau }

. Such a lift always exists, but it need not be canonical. Given a connection

Γ{displaystyle Gamma }

on

Y{displaystyle Y}

, every vector field

τ{displaystyle tau }

on

X{displaystyle X}

gives rise to the horizontal vector field

on

Y{displaystyle Y}

. This horizontal lift

τΓτ{displaystyle tau to Gamma tau }

yields a monomorphism of the

C(X){displaystyle C^{infty }(X)}

-module of vector fields on

X{displaystyle X}

to the

C(Y){displaystyle C^{infty }(Y)}

-module of vector fields on

Y{displaystyle Y}

, but this monomorphisms is not a Lie algebra morphism, unless

Γ{displaystyle Gamma }

is flat.

However, there is a category of above mentioned natural bundles

TX{displaystyle Tto X}

which admit the functorial lift

τ~{displaystyle {widetilde {tau }}}

onto

T{displaystyle T}

of any vector field

τ{displaystyle tau }

on

X{displaystyle X}

such that

ττ~{displaystyle tau to {widetilde {tau }}}

is a Lie algebra monomorphism

This functorial lift

τ~{displaystyle {widetilde {tau }}}

is an infinitesimal general covariant transformation of

T{displaystyle T}

.

In a general setting, one considers a monomorphism

ff~{displaystyle fto {widetilde {f}}}

of a group of diffeomorphisms of

X{displaystyle X}

to a group of bundle automorphisms of a natural bundle

TX{displaystyle Tto X}

. Automorphisms

f~{displaystyle {widetilde {f}}}

are called the general covariant transformations of

T{displaystyle T}

. For instance, no vertical automorphism of

T{displaystyle T}

is a general covariant transformation.

Natural bundles are exemplified by tensor bundles. For instance, the tangent bundle

TX{displaystyle TX}

of

X{displaystyle X}

is a natural bundle. Every diffeomorphism

f{displaystyle f}

of

X{displaystyle X}

gives rise to the tangent automorphism

f~=Tf{displaystyle {widetilde {f}}=Tf}

of

TX{displaystyle TX}

which is a general covariant transformation of

TX{displaystyle TX}

. With respect to the holonomic coordinates

(xλ,x˙λ){displaystyle (x^{lambda },{dot {x}}^{lambda })}

on

TX{displaystyle TX}

, this transformation reads

A frame bundle

FX{displaystyle FX}

of linear tangent frames in

TX{displaystyle TX}

also is a natural bundle. General covariant transformations constitute a subgroup of holonomic automorphisms of

FX{displaystyle FX}

. All bundles associated with a frame bundle are natural. However, there are natural bundles which are not associated with

FX{displaystyle FX}

.

See also[edit]

References[edit]

  • Kolář, I., Michor, P., Slovák, J., Natural operations in differential geometry. Springer-Verlag: Berlin Heidelberg, 1993. ISBN 3-540-56235-4, ISBN 0-387-56235-4.
  • Sardanashvily, G., Advanced Differential Geometry for Theoreticians. Fiber bundles, jet manifolds and Lagrangian theory, Lambert Academic Publishing: Saarbrücken, 2013. ISBN 978-3-659-37815-7; arXiv:0908.1886
  • Saunders, D.J. (1989), The geometry of jet bundles, Cambridge University Press, ISBN 0-521-36948-7


after-content-x4