[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/adapter-molecule-crk-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/adapter-molecule-crk-wikipedia\/","headline":"Adapter molecule crk – Wikipedia","name":"Adapter molecule crk – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Protein-coding gene in the species Homo sapiens Adapter molecule crk also known as","datePublished":"2019-04-22","dateModified":"2019-04-22","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/d\/d5\/PDB_1b07_EBI.jpg\/180px-PDB_1b07_EBI.jpg","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/d\/d5\/PDB_1b07_EBI.jpg\/180px-PDB_1b07_EBI.jpg","height":"135","width":"180"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/adapter-molecule-crk-wikipedia\/","wordCount":18099,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Protein-coding gene in the species Homo sapiensAdapter molecule crk also known as proto-oncogene c-Crk is a protein that in humans is encoded by the CRK gene.[5] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4The CRK protein participates in the Reelin signaling cascade downstream of DAB1.[6][7]Table of ContentsFunction[edit]Interactions[edit]See also[edit]References[edit]Further reading[edit]External links[edit]Function[edit]Adapter molecule crk is a member of an adapter protein family that binds to several tyrosine-phosphorylated proteins. This protein has several SH2 and SH3 domains (src-homology domains) and is involved in several signaling pathways, recruiting cytoplasmic proteins in the vicinity of tyrosine kinase through SH2-phosphotyrosine interaction. The N-terminal SH2 domain of this protein functions as a positive regulator of transformation whereas the C-terminal SH3 domain functions as a negative regulator of transformation. Two alternative transcripts encoding different isoforms with distinct biological activity have been described.[8] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Crk together with CrkL participates in the Reelin signaling cascade downstream of DAB1.[6][7]v-Crk, a transforming oncoprotein from avian sarcoma viruses, is a fusion of viral “gag” protein with the SH2 and SH3 domains of cellular Crk.[9] The name Crk is from “CT10 Regulator of Kinase” where CT10 is the avian virus from which was isolated a protein, lacking kinase domains, but capable of stimulating phosphorylation of tyrosines in cells.[10]Crk should not be confused with Src, which also has cellular (c-Src) and viral (v-Src) forms and is involved in some of the same signaling pathways but is a protein tyrosine-kinase.Interactions[edit]CRK (gene) has been shown to interact with:BCAR1,[11][12][13][14][15][16][17][18][19]Cbl gene,[20][21]Dock180,[22][13][14][23][24]EPS15,[25]Epidermal growth factor receptor,[26][27]Grb2,[28][22][29]IRS4,[30][31]MAP4K1,[32][33][34]MAPK8,[35]NEDD9,[36][37]PDGFRA,[38][39]PDGFRB,[38]PTK2,[13][16]Paxillin[16][40]RAPGEF1,[41]RICS,[42][43]SH3KBP1,[44] andSOS1.[29]See also[edit]References[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000167193 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000017776 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Mayer BJ, Hanafusa H (1990). “Association of the v-crk oncogene product with phosphotyrosine-containing proteins and protein kinase activity”. Proc Natl Acad Sci U S A. 87 (7): 2638\u201342. Bibcode:1990PNAS…87.2638M. doi:10.1073\/pnas.87.7.2638. PMC\u00a053745. PMID\u00a01690891.^ a b Matsuki T, Pramatarova A, Howell BW (June 2008). “Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis”. J. Cell Sci. 121 (Pt 11): 1869\u201375. doi:10.1242\/jcs.027334. PMC\u00a02430739. PMID\u00a018477607.^ a b Park TJ, Curran T (December 2008). “Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the Reelin pathway”. J. Neurosci. 28 (50): 13551\u201362. doi:10.1523\/JNEUROSCI.4323-08.2008. PMC\u00a02628718. PMID\u00a019074029.^ “Entrez Gene: CRK v-crk sarcoma virus CT10 oncogene homolog (avian)”.^ Tetsuya Nakamoto; Ryuichi Sakai; Keiya Ozawa; Yoshio Yazaki; Hisamaru Hirai (1996). “Direct Binding of C-terminal Region of p130Graphic to SH2 and SH3 Domains of Src Kinase”. J. Biol. Chem. 271 (15): 8959\u20138965. doi:10.1074\/jbc.271.15.8959. PMID\u00a08621540.^ Mayer BJ, Hamaguchi M, Hanafusa H (March 1988). “A novel viral oncogene with structural similarity to phospholipase C”. Nature. 332 (6161): 272\u20135. Bibcode:1988Natur.332..272M. doi:10.1038\/332272a0. PMID\u00a02450282. S2CID\u00a04352676.^ Zhou B, Liu L, Reddivari M, Zhang XA (2004). “The palmitoylation of metastasis suppressor KAI1\/CD82 is important for its motility- and invasiveness-inhibitory activity”. Cancer Res. 64 (20): 7455\u201363. doi:10.1158\/0008-5472.CAN-04-1574. PMID\u00a015492270.^ Di Stefano P, Cabodi S, Boeri Erba E, Margaria V, Bergatto E, Giuffrida MG, Silengo L, Tarone G, Turco E, Defilippi P (2004). “P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading”. Mol. Biol. Cell. 15 (2): 787\u2013800. doi:10.1091\/mbc.E03-09-0689. PMC\u00a0329393. PMID\u00a014657239.^ a b c Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003). “Differential regulation of cell motility and invasion by FAK”. J. Cell Biol. 160 (5): 753\u201367. doi:10.1083\/jcb.200212114. PMC\u00a02173366. PMID\u00a012615911.^ a b Gu J, Sumida Y, Sanzen N, Sekiguchi K (2001). “Laminin-10\/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-DOCK180 pathway”. J. Biol. Chem. 276 (29): 27090\u20137. doi:10.1074\/jbc.M102284200. PMID\u00a011369773.^ Garton AJ, Tonks NK (1999). “Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST”. J. Biol. Chem. 274 (6): 3811\u20138. doi:10.1074\/jbc.274.6.3811. PMID\u00a09920935.^ a b c Angers-Loustau A, C\u00f4t\u00e9 JF, Charest A, Dowbenko D, Spencer S, Lasky LA, Tremblay ML (1999). “Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts”. J. Cell Biol. 144 (5): 1019\u201331. doi:10.1083\/jcb.144.5.1019. PMC\u00a02148201. PMID\u00a010085298.^ Qiu W, Cobb RR, Scholz W (1998). “Inhibition of p130cas tyrosine phosphorylation by calyculin A”. J. Leukoc. Biol. 63 (5): 631\u20135. doi:10.1002\/jlb.63.5.631. PMID\u00a09581808. S2CID\u00a011177730.^ Blaukat A, Ivankovic-Dikic I, Gr\u00f6nroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I (1999). “Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades”. J. Biol. Chem. 274 (21): 14893\u2013901. doi:10.1074\/jbc.274.21.14893. PMID\u00a010329689.^ Wang JF, Park IW, Groopman JE (2000). “Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C”. Blood. 95 (8): 2505\u201313. doi:10.1182\/blood.V95.8.2505. PMID\u00a010753828.^ Gesbert F, Garbay C, Bertoglio J (1998). “Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells”. J. Biol. Chem. 273 (7): 3986\u201393. doi:10.1074\/jbc.273.7.3986. PMID\u00a09461587.^ Husson H, Mograbi B, Schmid-Antomarchi H, Fischer S, Rossi B (1997). “CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2”. Oncogene. 14 (19): 2331\u20138. doi:10.1038\/sj.onc.1201074. PMID\u00a09178909.^ a b Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T (1996). “Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins”. J. Biol. Chem. 271 (24): 14468\u201372. doi:10.1074\/jbc.271.24.14468. PMID\u00a08662907.^ Nishihara H, Kobayashi S, Hashimoto Y, Ohba F, Mochizuki N, Kurata T, Nagashima K, Matsuda M (1999). “Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins”. Biochim. Biophys. Acta. 1452 (2): 179\u201387. doi:10.1016\/S0167-4889(99)00133-0. PMID\u00a010559471.^ Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, Matsuda M (1996). “DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane”. Mol. Cell. Biol. 16 (4): 1770\u20136. doi:10.1128\/MCB.16.4.1770. PMC\u00a0231163. PMID\u00a08657152.^ Schumacher C, Knudsen BS, Ohuchi T, Di Fiore PP, Glassman RH, Hanafusa H (1995). “The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R”. J. Biol. Chem. 270 (25): 15341\u20137. doi:10.1074\/jbc.270.25.15341. PMID\u00a07797522.^ 9614078 Schulze WX, Deng L, Mann M (2005). “Phosphotyrosine interactome of the ErbB-receptor kinase family”. Mol. Syst. Biol. 1 (1): E1\u2013E13. doi:10.1038\/msb4100012. PMC\u00a01681463. PMID\u00a016729043.^ Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M (1998). “Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor”. J. Biol. Chem. 273 (27): 17186\u201391. doi:10.1074\/jbc.273.27.17186. PMID\u00a09642287.^ Riordan SM, Lidder S, Williams R, Skouteris GG (2000). “The beta-subunit of the hepatocyte growth factor\/scatter factor (HGF\/SF) receptor phosphorylates and associates with CrkII: expression of CrkII enhances HGF\/SF-induced mitogenesis”. Biochem. J. 350 (3): 925\u201332. doi:10.1042\/0264-6021:3500925. PMC\u00a01221328. PMID\u00a010970810.^ a b Okada S, Pessin JE (1996). “Interactions between Src homology (SH) 2\/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor”. J. Biol. Chem. 271 (41): 25533\u20138. doi:10.1074\/jbc.271.41.25533. PMID\u00a08810325.^ Karas M, Koval AP, Zick Y, LeRoith D (2001). “The insulin-like growth factor I receptor-induced interaction of insulin receptor substrate-4 and Crk-II”. Endocrinology. 142 (5): 1835\u201340. doi:10.1210\/endo.142.5.8135. PMID\u00a011316748.^ Koval AP, Karas M, Zick Y, LeRoith D (1998). “Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction”. J. Biol. Chem. 273 (24): 14780\u20137. doi:10.1074\/jbc.273.24.14780. PMID\u00a09614078.^ Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH, Feller SM (1998). “The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins”. Oncogene. 17 (15): 1893\u2013901. doi:10.1038\/sj.onc.1202108. PMID\u00a09788432.^ Ling P, Yao Z, Meyer CF, Wang XS, Oehrl W, Feller SM, Tan TH (1999). “Interaction of hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-terminal kinase”. Mol. Cell. Biol. 19 (2): 1359\u201368. doi:10.1128\/MCB.19.2.1359. PMC\u00a0116064. PMID\u00a09891069.^ Ling P, Meyer CF, Redmond LP, Shui JW, Davis B, Rich RR, Hu MC, Wange RL, Tan TH (2001). “Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling”. J. Biol. Chem. 276 (22): 18908\u201314. doi:10.1074\/jbc.M101485200. PMID\u00a011279207.^ Girardin SE, Yaniv M (2001). “A direct interaction between JNK1 and CrkII is critical for Rac1-induced JNK activation”. EMBO J. 20 (13): 3437\u201346. doi:10.1093\/emboj\/20.13.3437. PMC\u00a0125507. PMID\u00a011432831.^ Minegishi M, Tachibana K, Sato T, Iwata S, Nojima Y, Morimoto C (1996). “Structure and function of Cas-L, a 105-kD Crk-associated substrate-related protein that is involved in beta 1 integrin-mediated signaling in lymphocytes”. J. Exp. Med. 184 (4): 1365\u201375. doi:10.1084\/jem.184.4.1365. PMC\u00a02192828. PMID\u00a08879209.^ Ohashi Y, Tachibana K, Kamiguchi K, Fujita H, Morimoto C (1998). “T cell receptor-mediated tyrosine phosphorylation of Cas-L, a 105-kDa Crk-associated substrate-related protein, and its association of Crk and C3G”. J. Biol. Chem. 273 (11): 6446\u201351. doi:10.1074\/jbc.273.11.6446. PMID\u00a09497377.^ a b Matsumoto T, Yokote K, Take A, Takemoto M, Asaumi S, Hashimoto Y, Matsuda M, Saito Y, Mori S (2000). “Differential interaction of CrkII adaptor protein with platelet-derived growth factor alpha- and beta-receptors is determined by its internal tyrosine phosphorylation”. Biochem. Biophys. Res. Commun. 270 (1): 28\u201333. doi:10.1006\/bbrc.2000.2374. PMID\u00a010733900.^ Yokote K, Hellman U, Ekman S, Saito Y, R\u00f6nnstrand L, Saito Y, Heldin CH, Mori S (1998). “Identification of Tyr-762 in the platelet-derived growth factor alpha-receptor as the binding site for Crk proteins”. Oncogene. 16 (10): 1229\u201339. doi:10.1038\/sj.onc.1201641. PMID\u00a09546424.^ Abassi YA, Vuori K (2002). “Tyrosine 221 in Crk regulates adhesion-dependent membrane localization of Crk and Rac and activation of Rac signaling”. EMBO J. 21 (17): 4571\u201382. doi:10.1093\/emboj\/cdf446. PMC\u00a0126186. PMID\u00a012198159.^ Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, Matuoka K, Takenawa T, Kurata T, Nagashima K (1994). “C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2\/ASH proteins”. Proc. Natl. Acad. Sci. U.S.A. 91 (8): 3443\u20137. Bibcode:1994PNAS…91.3443T. doi:10.1073\/pnas.91.8.3443. PMC\u00a043593. PMID\u00a07512734.^ Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (2003). “GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2”. J. Biol. Chem. 278 (36): 34641\u201353. doi:10.1074\/jbc.M304594200. PMID\u00a012819203.^ Moon SY, Zang H, Zheng Y (2003). “Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP”. J. Biol. Chem. 278 (6): 4151\u20139. doi:10.1074\/jbc.M207789200. PMID\u00a012454018.^ Watanabe S, Take H, Takeda K, Yu ZX, Iwata N, Kajigaya S (2000). “Characterization of the CIN85 adaptor protein and identification of components involved in CIN85 complexes”. Biochem. Biophys. Res. Commun. 278 (1): 167\u201374. doi:10.1006\/bbrc.2000.3760. PMID\u00a011071869.Further reading[edit]ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}]]>Feller SM, Ren R, Hanafusa H, Baltimore D (1995). “SH2 and SH3 domains as molecular adhesives: the interactions of Crk and Abl”. Trends Biochem. Sci. 19 (11): 453\u20138. doi:10.1016\/0968-0004(94)90129-5. PMID\u00a07855886.Feller SM, Posern G, Voss J, et\u00a0al. (1999). “Physiological signals and oncogenesis mediated through Crk family adapter proteins”. J. Cell. Physiol. 177 (4): 535\u201352. doi:10.1002\/(SICI)1097-4652(199812)177:43.0.CO;2-E. PMID\u00a010092207. S2CID\u00a010190385.Pessin JE, Okada S (2002). “Insulin and EGF receptors integrate the Ras and Rap signaling pathways”. Endocr. J. 46 Suppl: S11\u20136. doi:10.1507\/endocrj.46.suppl_s11. PMID\u00a012054111.Cicchetti P, Mayer BJ, Thiel G, Baltimore D (1992). “Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho”. Science. 257 (5071): 803\u20136. Bibcode:1992Sci…257..803C. doi:10.1126\/science.1379745. PMID\u00a01379745.Matsuda M, Tanaka S, Nagata S, et\u00a0al. (1992). “Two species of human CRK cDNA encode proteins with distinct biological activities”. Mol. Cell. Biol. 12 (8): 3482\u20139. doi:10.1128\/MCB.12.8.3482. PMC\u00a0364597. PMID\u00a01630456.Anderson D, Koch CA, Grey L, et\u00a0al. (1990). “Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors”. Science. 250 (4983): 979\u201382. Bibcode:1990Sci…250..979A. doi:10.1126\/science.2173144. PMID\u00a02173144.Schaller MD, Hildebrand JD, Shannon JD, et\u00a0al. (1994). “Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src”. Mol. Cell. Biol. 14 (3): 1680\u20138. doi:10.1128\/MCB.14.3.1680. PMC\u00a0358526. PMID\u00a07509446.Hempstead BL, Birge RB, Fajardo JE, et\u00a0al. (1994). “Expression of the v-crk oncogene product in PC12 cells results in rapid differentiation by both nerve growth factor- and epidermal growth factor-dependent pathways”. Mol. Cell. Biol. 14 (3): 1964\u201371. doi:10.1128\/MCB.14.3.1964. PMC\u00a0358555. PMID\u00a07509449.Tanaka S, Morishita T, Hashimoto Y, et\u00a0al. (1994). “C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2\/ASH proteins”. Proc. Natl. Acad. Sci. U.S.A. 91 (8): 3443\u20137. Bibcode:1994PNAS…91.3443T. doi:10.1073\/pnas.91.8.3443. PMC\u00a043593. PMID\u00a07512734.Calalb MB, Polte TR, Hanks SK (1995). “Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases”. Mol. Cell. Biol. 15 (2): 954\u201363. doi:10.1128\/MCB.15.2.954. PMC\u00a0231984. PMID\u00a07529876.Teng KK, Lander H, Fajardo JE, et\u00a0al. (1995). “v-Crk modulation of growth factor-induced PC12 cell differentiation involves the Src homology 2 domain of v-Crk and sustained activation of the Ras\/mitogen-activated protein kinase pathway”. J. Biol. Chem. 270 (35): 20677\u201385. doi:10.1074\/jbc.270.35.20677. PMID\u00a07657647.Schumacher C, Knudsen BS, Ohuchi T, et\u00a0al. (1995). “The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R”. J. Biol. Chem. 270 (25): 15341\u20137. doi:10.1074\/jbc.270.25.15341. PMID\u00a07797522.Matsuda M, Hashimoto Y, Muroya K, et\u00a0al. (1994). “CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells”. Mol. Cell. Biol. 14 (8): 5495\u2013500. doi:10.1128\/MCB.14.8.5495. PMC\u00a0359069. PMID\u00a08035825.Feller SM, Knudsen B, Hanafusa H (1994). “c-Abl kinase regulates the protein binding activity of c-Crk”. EMBO J. 13 (10): 2341\u201351. doi:10.1002\/j.1460-2075.1994.tb06518.x. PMC\u00a0395099. PMID\u00a08194526.Fioretos T, Heisterkamp N, Groffen J, et\u00a0al. (1993). “CRK proto-oncogene maps to human chromosome band 17p13”. Oncogene. 8 (10): 2853\u20135. PMID\u00a08378094.Smit L, van der Horst G, Borst J (1996). “Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors”. J. Biol. Chem. 271 (15): 8564\u20139. doi:10.1074\/jbc.271.15.8564. PMID\u00a08621483.Beitner-Johnson D, Blakesley VA, Shen-Orr Z, et\u00a0al. (1996). “The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling”. J. Biol. Chem. 271 (16): 9287\u201390. doi:10.1074\/jbc.271.16.9287. PMID\u00a08621590.Hasegawa H, Kiyokawa E, Tanaka S, et\u00a0al. (1996). “DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane”. Mol. Cell. Biol. 16 (4): 1770\u20136. doi:10.1128\/MCB.16.4.1770. PMC\u00a0231163. PMID\u00a08657152.li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:\" \"counter(listitem)\"a0 \"}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:\" (\"counter(listitem)\"a0 \"}]]>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}]]>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}]]>PDB gallery1b07: CRK SH3 DOMAIN COMPLEXED WITH PEPTOID INHIBITOR1cka: STRUCTURAL BASIS FOR THE SPECIFIC INTERACTION OF LYSINE-CONTAINING PROLINE-RICH PEPTIDES WITH THE N-TERMINAL SH3 DOMAIN OF C-CRK1ckb: STRUCTURAL BASIS FOR THE SPECIFIC INTERACTION OF LYSINE-CONTAINING PROLINE-RICH PEPTIDES WITH THE N-TERMINAL SH3 DOMAIN OF C-CRK1ju5: Ternary complex of an Crk SH2 domain, Crk-derived phophopeptide, and Abl SH3 domain by NMR spectroscopy1m30: Solution structure of N-terminal SH3 domain from oncogene protein c-Crk1m3a: Solution structure of a circular form of the truncated N-terminal SH3 domain from oncogene protein c-Crk.1m3b: Solution structure of a circular form of the N-terminal SH3 domain (A134C, E135G, R191G mutant) from oncogene protein c-Crk.1m3c: Solution structure of a circular form of the N-terminal SH3 domain (E132C, E133G, R191G mutant) from oncogene protein c-Crk2dvj: phosphorylated Crk-II2eyv: SH2 domain of CT10-Regulated Kinase2eyw: N-terminal SH3 domain of CT10-Regulated Kinase2eyx: C-Terminal SH3 domain of CT10-Regulated Kinase2eyy: CT10-Regulated Kinase isoform I2eyz: CT10-Regulated Kinase isoform II2ggr: Solution structure of the C-terminal SH3 domain of c-CrkIIExternal links[edit] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/adapter-molecule-crk-wikipedia\/#breadcrumbitem","name":"Adapter molecule crk – Wikipedia"}}]}]