[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/apobec3f-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/apobec3f-wikipedia\/","headline":"APOBEC3F – Wikipedia","name":"APOBEC3F – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Protein-coding gene in the species Homo sapiens DNA dC->dU-editing enzyme APOBEC-3F is a","datePublished":"2017-06-16","dateModified":"2017-06-16","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/apobec3f-wikipedia\/","wordCount":4963,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Protein-coding gene in the species Homo sapiensDNA dC->dU-editing enzyme APOBEC-3F is a protein that in humans is encoded by the APOBEC3F gene.[3][4][5] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4This gene is a member of the cytidine deaminase gene family. It is one of seven related genes or pseudogenes found in a cluster, thought to result from gene duplication, on chromosome 22. Members of the cluster encode proteins that are structurally and functionally related to the C to U RNA-editing cytidine deaminase APOBEC1. It is thought that the proteins may be RNA editing enzymes and have roles in growth or cell cycle control. Alternatively spliced transcript variants encoding different isoforms have been identified.[5]References[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000128394 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, Navaratnam N (Feb 2002). “An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22”. Genomics. 79 (3): 285\u201396. doi:10.1006\/geno.2002.6718. PMID\u00a011863358.^ Holmes RK, Koning FA, Bishop KN, Malim MH (Jan 2007). “APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G”. J Biol Chem. 282 (4): 2587\u201395. doi:10.1074\/jbc.M607298200. PMID\u00a017121840.^ a b “Entrez Gene: APOBEC3F apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F”.Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication.Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM.J Virol. 2004 Jun;78(11):6073-6. doi: 10.1128\/JVI.78.11.6073-6076.2004.External links[edit]Further reading[edit]Wedekind JE, Dance GS, Sowden MP, Smith HC (2003). “Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business”. Trends Genet. 19 (4): 207\u201316. doi:10.1016\/S0168-9525(03)00054-4. PMID\u00a012683974.Franca R, Spadari S, Maga G (2006). “APOBEC deaminases as cellular antiviral factors: a novel natural host defense mechanism”. Med. Sci. Monit. 12 (5): RA92\u20138. PMID\u00a016641889.Prashar Y, Weissman SM (1996). “Analysis of differential gene expression by display of 3′ end restriction fragments of cDNAs”. Proc. Natl. Acad. Sci. U.S.A. 93 (2): 659\u201363. Bibcode:1996PNAS…93..659P. doi:10.1073\/pnas.93.2.659. PMC\u00a040108. PMID\u00a08570611.Bonaldo MF, Lennon G, Soares MB (1997). “Normalization and subtraction: two approaches to facilitate gene discovery”. Genome Res. 6 (9): 791\u2013806. doi:10.1101\/gr.6.9.791. PMID\u00a08889548.Dunham I, Shimizu N, Roe BA, et\u00a0al. (1999). “The DNA sequence of human chromosome 22”. Nature. 402 (6761): 489\u201395. Bibcode:1999Natur.402..489D. doi:10.1038\/990031. PMID\u00a010591208.Strausberg RL, Feingold EA, Grouse LH, et\u00a0al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899\u2013903. Bibcode:2002PNAS…9916899M. doi:10.1073\/pnas.242603899. PMC\u00a0139241. PMID\u00a012477932.Zheng YH, Irwin D, Kurosu T, et\u00a0al. (2004). “Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication”. J. Virol. 78 (11): 6073\u20136. doi:10.1128\/JVI.78.11.6073-6076.2004. PMC\u00a0415831. PMID\u00a015141007.Wiegand HL, Doehle BP, Bogerd HP, Cullen BR (2004). “A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins”. EMBO J. 23 (12): 2451\u20138. doi:10.1038\/sj.emboj.7600246. PMC\u00a0423288. PMID\u00a015152192.Liddament MT, Brown WL, Schumacher AJ, Harris RS (2004). “APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo”. Curr. Biol. 14 (15): 1385\u201391. doi:10.1016\/j.cub.2004.06.050. PMID\u00a015296757.Collins JE, Wright CL, Edwards CA, et\u00a0al. (2005). “A genome annotation-driven approach to cloning the human ORFeome”. Genome Biol. 5 (10): R84. doi:10.1186\/gb-2004-5-10-r84. PMC\u00a0545604. PMID\u00a015461802.Gerhard DS, Wagner L, Feingold EA, et\u00a0al. (2004). “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)”. Genome Res. 14 (10B): 2121\u20137. doi:10.1101\/gr.2596504. PMC\u00a0528928. PMID\u00a015489334.Hach\u00e9 G, Liddament MT, Harris RS (2005). “The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain”. J. Biol. Chem. 280 (12): 10920\u20134. doi:10.1074\/jbc.M500382200. PMID\u00a015647250.Kimura K, Wakamatsu A, Suzuki Y, et\u00a0al. (2006). “Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes”. Genome Res. 16 (1): 55\u201365. doi:10.1101\/gr.4039406. PMC\u00a01356129. PMID\u00a016344560.Zennou V, Bieniasz PD (2006). “Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates”. Virology. 349 (1): 31\u201340. doi:10.1016\/j.virol.2005.12.035. PMID\u00a016460778.Tian C, Yu X, Zhang W, et\u00a0al. (2006). “Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F”. J. Virol. 80 (6): 3112\u20135. doi:10.1128\/JVI.80.6.3112-3115.2006. PMC\u00a01395459. PMID\u00a016501124.Stenglein MD, Harris RS (2006). “APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism”. J. Biol. Chem. 281 (25): 16837\u201341. doi:10.1074\/jbc.M602367200. PMID\u00a016648136.Wichroski MJ, Robb GB, Rana TM (2006). “Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies”. PLOS Pathog. 2 (5): e41. doi:10.1371\/journal.ppat.0020041. PMC\u00a01458959. PMID\u00a016699599. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/apobec3f-wikipedia\/#breadcrumbitem","name":"APOBEC3F – Wikipedia"}}]}]