Armstrong’s axioms – Wikipedia

before-content-x4

From Wikipedia, the free encyclopedia

after-content-x4

Armstrong’s axioms are a set of references (or, more precisely, inference rules) used to infer all the functional dependencies on a relational database. They were developed by William W. Armstrong in his 1974 paper.[1] The axioms are sound in generating only functional dependencies in the closure of a set of functional dependencies (denoted as

F+{displaystyle F^{+}}

) when applied to that set (denoted as

F{displaystyle F}

). They are also complete in that repeated application of these rules will generate all functional dependencies in the closure

F+{displaystyle F^{+}}

.

More formally, let

R(U),F{displaystyle langle R(U),Frangle }

denote a relational scheme over the set of attributes

after-content-x4
U{displaystyle U}

with a set of functional dependencies

F{displaystyle F}

. We say that a functional dependency

f{displaystyle f}

is logically implied by

F{displaystyle F}

, and denote it with

Ff{displaystyle Fmodels f}

if and only if for every instance

r{displaystyle r}

of

R{displaystyle R}

that satisfies the functional dependencies in

F{displaystyle F}

,

r{displaystyle r}

also satisfies

f{displaystyle f}

. We denote by

F+{displaystyle F^{+}}

the set of all functional dependencies that are logically implied by

F{displaystyle F}

.

Furthermore, with respect to a set of inference rules

A{displaystyle A}

, we say that a functional dependency

f{displaystyle f}

is derivable from the functional dependencies in

F{displaystyle F}

by the set of inference rules

A{displaystyle A}

, and we denote it by

FAf{displaystyle Fvdash _{A}f}

if and only if

f{displaystyle f}

is obtainable by means of repeatedly applying the inference rules in

A{displaystyle A}

to functional dependencies in

F{displaystyle F}

. We denote by

FA{displaystyle F_{A}^{*}}

the set of all functional dependencies that are derivable from

F{displaystyle F}

by inference rules in

A{displaystyle A}

.

Then, a set of inference rules

A{displaystyle A}

is sound if and only if the following holds:

FAF+{displaystyle F_{A}^{*}subseteq F^{+}}

that is to say, we cannot derive by means of

A{displaystyle A}

functional dependencies that are not logically implied by

F{displaystyle F}

.
The set of inference rules

A{displaystyle A}

is said to be complete if the following holds:

F+FA{displaystyle F^{+}subseteq F_{A}^{*}}

more simply put, we are able to derive by

A{displaystyle A}

all the functional dependencies that are logically implied by

F{displaystyle F}

.

Axioms (primary rules)[edit]

Let

R(U){displaystyle R(U)}

be a relation scheme over the set of attributes

U{displaystyle U}

. Henceforth we will denote by letters

X{displaystyle X}

,

Y{displaystyle Y}

,

Z{displaystyle Z}

any subset of

U{displaystyle U}

and, for short, the union of two sets of attributes

X{displaystyle X}

and

Y{displaystyle Y}

by

XY{displaystyle XY}

instead of the usual

XY{displaystyle Xcup Y}

; this notation is rather standard in database theory when dealing with sets of attributes.

Axiom of reflexivity[edit]

If

X{displaystyle X}

is a set of attributes and

Y{displaystyle Y}

is a subset of

X{displaystyle X}

, then

X{displaystyle X}

holds

Y{displaystyle Y}

. Hereby,

X{displaystyle X}

holds

Y{displaystyle Y}

[

XY{displaystyle Xto Y}

] means that

X{displaystyle X}

functionally determines

Y{displaystyle Y}

.

If

Axiom of augmentation[edit]

If

X{displaystyle X}

holds

Y{displaystyle Y}

and

Z{displaystyle Z}

is a set of attributes, then

XZ{displaystyle XZ}

holds

YZ{displaystyle YZ}

. It means that attribute in dependencies does not change the basic dependencies.

If

Axiom of transitivity[edit]

If

X{displaystyle X}

holds

Y{displaystyle Y}

and

Y{displaystyle Y}

holds

Z{displaystyle Z}

, then

X{displaystyle X}

holds

Z{displaystyle Z}

.

If

Additional rules (Secondary Rules)[edit]

These rules can be derived from the above axioms.

Decomposition[edit]

If

XYZ{displaystyle Xto YZ}

then

XY{displaystyle Xto Y}

and

XZ{displaystyle Xto Z}

.

Proof[edit]

1. (Given)
2. (Reflexivity)
3. (Transitivity of 1 & 2)

Composition[edit]

If

XY{displaystyle Xto Y}

and

AB{displaystyle Ato B}

then

XAYB{displaystyle XAto YB}

.

Proof[edit]

Union (Notation)[edit]

If

XY{displaystyle Xto Y}

and

XZ{displaystyle Xto Z}

then

XYZ{displaystyle Xto YZ}

.

Proof[edit]

Pseudo transitivity[edit]

If

XY{displaystyle Xto Y}

and

YZW{displaystyle YZto W}

then

XZW{displaystyle XZto W}

.

Proof[edit]

1. (Given)
2. (Given)
3. (Augmentation of 1 & Z)
4. (Transitivity of 3 and 2)

Self determination[edit]

II{displaystyle Ito I}

for any

I{displaystyle I}

. This follows directly from the axiom of reflexivity.

Extensivity[edit]

The following property is a special case of augmentation when

Z=X{displaystyle Z=X}

.

If

Extensivity can replace augmentation as axiom in the sense that augmentation can be proved from extensivity together with the other axioms.

Proof[edit]

Armstrong relation[edit]

Given a set of functional dependencies

F{displaystyle F}

, an Armstrong relation is a relation which satisfies all the functional dependencies in the closure

F+{displaystyle F^{+}}

and only those dependencies. Unfortunately, the minimum-size Armstrong relation for a given set of dependencies can have a size which is an exponential function of the number of attributes in the dependencies considered.[2]

References[edit]

External links[edit]



after-content-x4