[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/arrestin-beta-2-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/arrestin-beta-2-wikipedia\/","headline":"Arrestin beta 2 – Wikipedia","name":"Arrestin beta 2 – Wikipedia","description":"From Wikipedia, the free encyclopedia Protein-coding gene in the species Homo sapiens Beta-arrestin-2, also known as arrestin beta-2, is an","datePublished":"2018-04-07","dateModified":"2018-04-07","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/arrestin-beta-2-wikipedia\/","about":["Wiki"],"wordCount":9747,"articleBody":"From Wikipedia, the free encyclopediaProtein-coding gene in the species Homo sapiensBeta-arrestin-2, also known as arrestin beta-2, is an intracellular protein that in humans is encoded by the ARRB2 gene.Members of arrestin\/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of G protein-coupled receptors and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals,[5][6][7] as well as having signalling roles in their own right.[8][9][10][11][12] Arrestin beta 2, like arrestin beta 1, was shown to inhibit beta-adrenergic receptor function in vitro. It is expressed at high levels in the central nervous system and may play a role in the regulation of synaptic receptors. Besides the brain, a cDNA for arrestin beta 2 was isolated from thyroid gland, and thus it may also be involved in hormone-specific desensitization of TSH receptors. Multiple alternatively spliced transcript variants have been found for this gene, but the full-length nature of some variants has not been defined.[13]The protein may interact with the agonist DOI in 5-HT2A receptor signaling.[14][15]Arrestin beta 2 is crucial for the development of tolerance to morphine and other opioids.Table of ContentsInteractions[edit]References[edit]Further reading[edit]External links[edit]Interactions[edit]Arrestin beta 2 has been shown to interact withReferences[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000141480 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000060216 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Breivogel CS, Lambert JM, Gerfin S, Huffman JW, Razdan RK (July 2008). “Sensitivity to delta9-tetrahydrocannabinol is selectively enhanced in beta-arrestin2 -\/- mice”. Behavioural Pharmacology. 19 (4): 298\u2013307. doi:10.1097\/FBP.0b013e328308f1e6. PMC\u00a02751575. PMID\u00a018622177.^ Li Y, Liu X, Liu C, Kang J, Yang J, Pei G, Wu C (March 2009). “Improvement of morphine-mediated analgesia by inhibition of \u03b2-arrestin2 expression in mice periaqueductal gray matter”. International Journal of Molecular Sciences. 10 (3): 954\u201363. doi:10.3390\/ijms10030954. PMC\u00a02672012. PMID\u00a019399231.^ Zheng H, Loh HH, Law PY (January 2008). “Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein-dependent ERK activation”. Molecular Pharmacology. 73 (1): 178\u201390. doi:10.1124\/mol.107.039842. PMC\u00a02253657. PMID\u00a017947509.^ Ma L, Pei G (January 2007). “Beta-arrestin signaling and regulation of transcription”. Journal of Cell Science. 120 (Pt 2): 213\u20138. doi:10.1242\/jcs.03338. PMID\u00a017215450.^ Defea K (March 2008). “Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction”. British Journal of Pharmacology. 153 Suppl 1 (S1): S298-309. doi:10.1038\/sj.bjp.0707508. PMC\u00a02268080. PMID\u00a018037927.^ Barki-Harrington L, Rockman HA (February 2008). “Beta-arrestins: multifunctional cellular mediators”. Physiology. 23: 17\u201322. doi:10.1152\/physiol.00042.2007. PMID\u00a018268361.^ Patel PA, Tilley DG, Rockman HA (March 2009). “Physiologic and cardiac roles of beta-arrestins”. Journal of Molecular and Cellular Cardiology. 46 (3): 300\u20138. doi:10.1016\/j.yjmcc.2008.11.015. PMID\u00a019103204.^ Golan M, Schreiber G, Avissar S (2009). “Antidepressants, beta-arrestins and GRKs: from regulation of signal desensitization to intracellular multifunctional adaptor functions”. Current Pharmaceutical Design. 15 (14): 1699\u2013708. doi:10.2174\/138161209788168038. PMID\u00a019442183.^ “ARRB2 arrestin beta 2 [ Homo sapiens (human) ]”. National Center for Biotechnology Information.^ Schmid CL, Raehal KM, Bohn LM (January 2008). “Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo”. Proceedings of the National Academy of Sciences of the United States of America. 105 (3): 1079\u201384. doi:10.1073\/pnas.0708862105. PMC\u00a02242710. PMID\u00a018195357.^ Abbas A, Roth BL (January 2008). “Arresting serotonin”. Proceedings of the National Academy of Sciences of the United States of America. 105 (3): 831\u20132. Bibcode:2008PNAS..105..831A. doi:10.1073\/pnas.0711335105. PMC\u00a02242676. PMID\u00a018195368.^ Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (March 1999). “The beta2-adrenergic receptor\/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis”. Proceedings of the National Academy of Sciences of the United States of America. 96 (7): 3712\u20137. Bibcode:1999PNAS…96.3712L. doi:10.1073\/pnas.96.7.3712. PMC\u00a022359. PMID\u00a010097102.^ Kim YM, Benovic JL (August 2002). “Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking”. The Journal of Biological Chemistry. 277 (34): 30760\u20138. doi:10.1074\/jbc.M204528200. PMID\u00a012070169.^ Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (November 2001). “beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis”. The Journal of Biological Chemistry. 276 (45): 42509\u201313. doi:10.1074\/jbc.M108399200. PMID\u00a011533043.^ Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G (February 2003). “Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2”. The Journal of Biological Chemistry. 278 (8): 6363\u201370. doi:10.1074\/jbc.M210350200. PMID\u00a012488444.^ Wang P, Wu Y, Ge X, Ma L, Pei G (March 2003). “Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus”. The Journal of Biological Chemistry. 278 (13): 11648\u201353. doi:10.1074\/jbc.M208109200. PMID\u00a012538596.^ Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (August 2008). “Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor”. The Journal of Biological Chemistry. 283 (32): 22166\u201376. doi:10.1074\/jbc.M709668200. PMC\u00a02494938. PMID\u00a018544533.^ Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SS (August 2002). “Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization”. Nature Cell Biology. 4 (8): 547\u201355. doi:10.1038\/ncb821. PMID\u00a012105416. S2CID\u00a020784208.Further reading[edit]Lefkowitz RJ (July 1998). “G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization”. The Journal of Biological Chemistry. 273 (30): 18677\u201380. doi:10.1074\/jbc.273.30.18677. PMID\u00a09668034.Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (September 1992). “Beta-arrestin2, a novel member of the arrestin\/beta-arrestin gene family”. The Journal of Biological Chemistry. 267 (25): 17882\u201390. doi:10.1016\/S0021-9258(19)37125-X. PMID\u00a01517224.Rapoport B, Kaufman KD, Chazenbalk GD (April 1992). “Cloning of a member of the arrestin family from a human thyroid cDNA library”. Molecular and Cellular Endocrinology. 84 (3): R39-43. doi:10.1016\/0303-7207(92)90038-8. PMID\u00a01587386. S2CID\u00a01964362.Calabrese G, Sallese M, Stornaiuolo A, Stuppia L, Palka G, De Blasi A (September 1994). “Chromosome mapping of the human arrestin (SAG), beta-arrestin 2 (ARRB2), and beta-adrenergic receptor kinase 2 (ADRBK2) genes”. Genomics. 23 (1): 286\u20138. doi:10.1006\/geno.1994.1497. PMID\u00a07695743.Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, De Blasi A (May 1993). “Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing”. The Journal of Biological Chemistry. 268 (13): 9753\u201361. doi:10.1016\/S0021-9258(18)98412-7. PMID\u00a08486659.Le Gouill C, Parent JL, Rola-Pleszczynski M, Stankov\u00e1 J (February 1997). “Role of the Cys90, Cys95 and Cys173 residues in the structure and function of the human platelet-activating factor receptor”. FEBS Letters. 402 (2\u20133): 203\u20138. doi:10.1016\/S0014-5793(96)01531-1. PMID\u00a09037196. S2CID\u00a021074692.Barak LS, Ferguson SS, Zhang J, Caron MG (October 1997). “A beta-arrestin\/green fluorescent protein biosensor for detecting G protein-coupled receptor activation”. The Journal of Biological Chemistry. 272 (44): 27497\u2013500. doi:10.1074\/jbc.272.44.27497. PMID\u00a09346876.Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (March 1999). “The beta2-adrenergic receptor\/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis”. Proceedings of the National Academy of Sciences of the United States of America. 96 (7): 3712\u20137. Bibcode:1999PNAS…96.3712L. doi:10.1073\/pnas.96.7.3712. PMC\u00a022359. PMID\u00a010097102.Cheng ZJ, Zhao J, Sun Y, Hu W, Wu YL, Cen B, Wu GX, Pei G (January 2000). “beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4”. The Journal of Biological Chemistry. 275 (4): 2479\u201385. doi:10.1074\/jbc.275.4.2479. PMID\u00a010644702.Lin F, Wang Hy, Malbon CC (June 2000). “Gravin-mediated formation of signaling complexes in beta 2-adrenergic receptor desensitization and resensitization”. The Journal of Biological Chemistry. 275 (25): 19025\u201334. doi:10.1074\/jbc.275.25.19025. PMID\u00a010858453.McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (November 2000). “Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3”. Science. 290 (5496): 1574\u20137. Bibcode:2000Sci…290.1574M. doi:10.1126\/science.290.5496.1574. PMID\u00a011090355.Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ (February 2001). “Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds”. Proceedings of the National Academy of Sciences of the United States of America. 98 (5): 2449\u201354. Bibcode:2001PNAS…98.2449L. doi:10.1073\/pnas.041604898. PMC\u00a030158. PMID\u00a011226259.Cen B, Yu Q, Guo J, Wu Y, Ling K, Cheng Z, Ma L, Pei G (March 2001). “Direct binding of beta-arrestins to two distinct intracellular domains of the delta opioid receptor”. Journal of Neurochemistry. 76 (6): 1887\u201394. doi:10.1046\/j.1471-4159.2001.00204.x. PMID\u00a011259507. S2CID\u00a083485138.Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (June 2001). “Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*”. The Journal of Biological Chemistry. 276 (22): 19452\u201360. doi:10.1074\/jbc.M101450200. PMID\u00a011279203.Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ (July 2001). “Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3”. The Journal of Biological Chemistry. 276 (30): 27770\u20137. doi:10.1074\/jbc.M102264200. PMID\u00a011356842.Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (November 2001). “beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis”. The Journal of Biological Chemistry. 276 (45): 42509\u201313. doi:10.1074\/jbc.M108399200. PMID\u00a011533043.Hilairet S, B\u00e9langer C, Bertrand J, Laperri\u00e8re A, Foord SM, Bouvier M (November 2001). “Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin”. The Journal of Biological Chemistry. 276 (45): 42182\u201390. doi:10.1074\/jbc.M107323200. PMID\u00a011535606.Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (November 2001). “Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin”. Science. 294 (5545): 1307\u201313. Bibcode:2001Sci…294.1307S. doi:10.1126\/science.1063866. PMID\u00a011588219. S2CID\u00a023486946.Chen Z, Dupr\u00e9 DJ, Le Gouill C, Rola-Pleszczynski M, Stankov\u00e1 J (March 2002). “Agonist-induced internalization of the platelet-activating factor receptor is dependent on arrestins but independent of G-protein activation. Role of the C terminus and the (D\/N)PXXY motif”. The Journal of Biological Chemistry. 277 (9): 7356\u201362. doi:10.1074\/jbc.M110058200. PMID\u00a011729201.External links[edit]This article incorporates text from the United States National Library of Medicine, which is in the public domain. "},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/arrestin-beta-2-wikipedia\/#breadcrumbitem","name":"Arrestin beta 2 – Wikipedia"}}]}]