[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/grunskys-theorem-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/grunskys-theorem-wikipedia\/","headline":"Grunsky’s theorem – Wikipedia","name":"Grunsky’s theorem – Wikipedia","description":"From Wikipedia, the free encyclopedia In mathematics, Grunsky’s theorem, due to the German mathematician Helmut Grunsky, is a result in","datePublished":"2017-05-11","dateModified":"2017-05-11","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/wikimedia.org\/api\/rest_v1\/media\/math\/render\/svg\/da3976964e6fcfd2cb859dcbb00107a1f37ccf51","url":"https:\/\/wikimedia.org\/api\/rest_v1\/media\/math\/render\/svg\/da3976964e6fcfd2cb859dcbb00107a1f37ccf51","height":"","width":""},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/grunskys-theorem-wikipedia\/","about":["Wiki"],"wordCount":5635,"articleBody":"From Wikipedia, the free encyclopediaIn mathematics, Grunsky’s theorem, due to the German mathematician Helmut Grunsky, is a result in complex analysis concerning holomorphic univalent functions defined on the unit disk in the complex numbers. The theorem states that a univalent function defined on the unit disc, fixing the point 0, maps every disk |z| < r onto a starlike domain for r \u2264 tanh \u03c0\/4. The largest r for which this is true is called the radius of starlikeness of the function.Table of ContentsStatement[edit]An inequality of Grunsky[edit]Proof[edit]Proof of the theorem[edit]References[edit]Statement[edit]Let f be a univalent holomorphic function on the unit disc D such that f(0) = 0. Then for all r \u2264 tanh\u00a0\u03c0\/4, the image of the disc |z| < r is starlike with respect to 0, , i.e. it is invariant under multiplication by real numbers in (0,1).An inequality of Grunsky[edit]If f(z) is univalent on D with f(0) = 0, then|log\u2061zf\u2032(z)f(z)|\u2264log\u20611+|z|1\u2212|z|.{displaystyle left|log {zf^{prime }(z) over f(z)}right|leq log {1+|z| over 1-|z|}.}Taking the real and imaginary parts of the logarithm, this implies the two inequalities|zf\u2032(z)f(z)|\u22641+|z|1\u2212|z|{displaystyle left|{zf^{prime }(z) over f(z)}right|leq {1+|z| over 1-|z|}}and|arg\u2061zf\u2032(z)f(z)|\u2264log\u20611+|z|1\u2212|z|.{displaystyle left|arg {zf^{prime }(z) over f(z)}right|leq log {1+|z| over 1-|z|}.}For fixed z, both these equalities are attained by suitable Koebe functionsgw(\u03b6)=\u03b6(1\u2212w\u00af\u03b6)2,{displaystyle g_{w}(zeta )={zeta over (1-{overline {w}}zeta )^{2}},}where |w| = 1.Proof[edit]Grunsky (1932) originally proved these inequalities based on extremal techniques of Ludwig Bieberbach. Subsequent proofs, outlined in Goluzin (1939), relied on the Loewner equation. More elementary proofs were subsequently given based on Goluzin’s inequalities, an equivalent form of Grunsky’s inequalities (1939) for the Grunsky matrix.For a univalent function g in z > 1 with an expansiong(z)=z+b1z\u22121+b2z\u22122+\u22ef.{displaystyle g(z)=z+b_{1}z^{-1}+b_{2}z^{-2}+cdots .}Goluzin’s inequalities state that|\u2211i=1n\u2211j=1n\u03bbi\u03bbjlog\u2061g(zi)\u2212g(zj)zi\u2212zj|\u2264\u2211i=1n\u2211j=1n\u03bbi\u03bbj\u00aflog\u2061zizj\u00afzizj\u00af\u22121,{displaystyle left|sum _{i=1}^{n}sum _{j=1}^{n}lambda _{i}lambda _{j}log {g(z_{i})-g(z_{j}) over z_{i}-z_{j}}right|leq sum _{i=1}^{n}sum _{j=1}^{n}lambda _{i}{overline {lambda _{j}}}log {z_{i}{overline {z_{j}}} over z_{i}{overline {z_{j}}}-1},}where the zi are distinct points with |zi| > 1 and \u03bbi are arbitrary complex numbers.Taking n = 2. with \u03bb1 = \u2013 \u03bb2 = \u03bb, the inequality implies|log\u2061g\u2032(\u03b6)g\u2032(\u03b7)(\u03b6\u2212\u03b7)2(g(\u03b6)\u2212g(\u03b7))2|\u2264log\u2061|1\u2212\u03b6\u03b7\u00af|2(|\u03b6|2\u22121)(|\u03b7|2\u22121).{displaystyle left|log {g^{prime }(zeta )g^{prime }(eta )(zeta -eta )^{2} over (g(zeta )-g(eta ))^{2}}right|leq log {|1-zeta {overline {eta }}|^{2} over (|zeta |^{2}-1)(|eta |^{2}-1)}.}If g is an odd function and \u03b7 = \u2013 \u03b6, this yields|log\u2061\u03b6g\u2032(\u03b6)g(\u03b6)|\u2264|\u03b6|2+1|\u03b6|2\u22121.{displaystyle left|log {zeta g^{prime }(zeta ) over g(zeta )}right|leq {|zeta |^{2}+1 over |zeta |^{2}-1}.}Finally if f is any normalized univalent function in D, the required inequality for f follows by takingg(\u03b6)=f(\u03b6\u22122)\u221212{displaystyle g(zeta )=f(zeta ^{-2})^{-{1 over 2}}}with z=\u03b6\u22122.{displaystyle z=zeta ^{-2}.}Proof of the theorem[edit]Let f be a univalent function on D with f(0) = 0. By Nevanlinna’s criterion, f is starlike on |z| < r if and only if\u211czf\u2032(z)f(z)\u22650{displaystyle Re {zf^{prime }(z) over f(z)}geq 0}for |z| < r. Equivalently|arg\u2061zf\u2032(z)f(z)|\u2264\u03c02.{displaystyle left|arg {zf^{prime }(z) over f(z)}right|leq {pi over 2}.}On the other hand by the inequality of Grunsky above,|arg\u2061zf\u2032(z)f(z)|\u2264log\u20611+|z|1\u2212|z|.{displaystyle left|arg {zf^{prime }(z) over f(z)}right|leq log {1+|z| over 1-|z|}.}Thus iflog\u20611+|z|1\u2212|z|\u2264\u03c02,{displaystyle log {1+|z| over 1-|z|}leq {pi over 2},}the inequality holds at z. This condition is equivalent to|z|\u2264tanh\u2061\u03c04{displaystyle |z|leq tanh {pi over 4}}and hence f is starlike on any disk |z| < r with r \u2264 tanh \u03c0\/4.References[edit]Duren, P. L. (1983), Univalent functions, Grundlehren der Mathematischen Wissenschaften, vol.\u00a0259, Springer-Verlag, pp.\u00a095\u201398, ISBN\u00a00-387-90795-5Goluzin, G.M. (1939), “Interior problems of the theory of univalent functions”, Uspekhi Mat. Nauk, 6: 26\u201389 (in Russian)Goluzin, G. M. (1969), Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, vol.\u00a026, American Mathematical SocietyGoodman, A.W. (1983), Univalent functions, vol.\u00a0I, Mariner Publishing Co., ISBN\u00a00-936166-10-XGoodman, A.W. (1983), Univalent functions, vol.\u00a0II, Mariner Publishing Co., ISBN\u00a00-936166-11-8Grunsky, H. (1932), “Neue Absch\u00e4tzungen zur konformen Abbildung ein- und mehrfach zusammenh\u00e4ngender Bereiche (inaugural dissertation)”, Schr. Math. Inst. U. Inst. Angew. Math. Univ. Berlin, 1: 95\u2013140, archived from the original on 2015-02-11, retrieved 2011-12-07 (in German)Grunsky, H. (1934), “Zwei Bemerkungen zur konformen Abbildung”, Jber. Deutsch. Math.-Verein., 43: 140\u2013143 (in German)Hayman, W. K. (1994), Multivalent functions, Cambridge Tracts in Mathematics, vol.\u00a0110 (2nd\u00a0ed.), Cambridge University Press, ISBN\u00a00-521-46026-3Nevanlinna, R. (1921), “\u00dcber die konforme Abbildung von Sterngebieten”, \u00d6fvers. Finska Vet. Soc. Forh., 53: 1\u201321Pommerenke, C. (1975), Univalent functions, with a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica\/Mathematische Lehrb\u00fccher, vol.\u00a015, Vandenhoeck & Ruprecht "},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/grunskys-theorem-wikipedia\/#breadcrumbitem","name":"Grunsky’s theorem – Wikipedia"}}]}]