[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/hsp90ab1-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/hsp90ab1-wikipedia\/","headline":"HSP90AB1 – Wikipedia","name":"HSP90AB1 – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Protein-coding gene in the species Homo sapiens Heat shock protein HSP 90-beta also","datePublished":"2015-08-26","dateModified":"2015-08-26","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/6\/63\/Journal_Icon.svg\/20px-Journal_Icon.svg.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/6\/63\/Journal_Icon.svg\/20px-Journal_Icon.svg.png","height":"18","width":"20"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/hsp90ab1-wikipedia\/","about":["Wiki"],"wordCount":16942,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Protein-coding gene in the species Homo sapiensHeat shock protein HSP 90-beta also called HSP90beta is a protein that in humans is encoded by the HSP90AB1 gene.[5][6][7] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Table of ContentsFunction[edit]Classification[edit]Co-chaperones[edit]Isoforms[edit]Protein structure[edit]Client proteins[edit]Clinical significance[edit]Cancer[edit]References[edit]Further reading[edit]Function[edit]HSP90AB1 is a molecular chaperone. Chaperones are proteins that bind to other proteins, thereby stabilizing them[8][9][10][11][12][13][14] in an ATP-dependent manner.[15] Chaperones stabilize new proteins during translation, mature proteins which are partially unstable but also proteins that have become partially denatured due to various kinds of cellular stress. In case proper folding or refolding is impossible, HSPs mediate protein degradation. They also have specialized functions, such as intracellular transport into organelles.Classification[edit]Human HSPs are classified into 5 major groups according to the HGNC:[16][17] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Chaperonins are characterized by their barrel-shaped structure with binding sites for client proteins inside the barrels.The human HSP90 group consists of 5 members according to the HGNC:[17][18]HSP90AA1 (heat shock protein 90 kDa alpha, class A, member 1)HSP90AA3P (heat shock protein 90 alpha family class A member 3, pseudogene)HSP90AB1 (heat shock protein 90 kDa alpha, class B, member 1) (this protein)HSP90B1 (heat shock protein 90 kDA beta, member 1)TRAP1 (TNF receptor associated protein 1)Whereas HSP90AA1 and HSP90AB1 are located primarily in the cytoplasm of the cells, HSP90B1 can be found in the endoplasmic reticulum and Trap1 in mitochondria.Co-chaperones[edit]Co-chaperones bind to HSPs and influence their activity, substrate (client) specificity and interaction with other HSPs.[14] For example, the co-chaperone CDC37 (cell division cycle 37) stabilizes the cell cycle regulatory proteins CDK4 (cyclin dependent kinase 4) and Cdk6.[19]Hop (HSP organizing protein) mediates the interaction between different HSPs, forming HSP70\u2013HSP90 complexes.[20][21]TOM70 (translocase of the outer mitochondrial membrane of ~70 kDa) mediates translocation of client proteins through the import pore into the mitochondrial matrix.[21][22]Isoforms[edit]Human HPS90AB1 shares 60% overall homology to its closest relative HSP90AA1.[23] Murine HSP90AB1 was cloned in 1987 based on homology of the corresponding Drosophila melanogaster gene.[24][25]Protein structure[edit]HSP90AB1 is active as homodimer, forming a V-shaped structure.[21][26][27][28][29][30]It consists of three major domains:N-terminal domain (NTD) containing the ATP binding sitemiddle domain, primarily responsible for substrate bindingC-terminal domain (CTD) which is the dimerization domain (base of the V).Between these domains, there are short charged domains. Co-chaperones primarily bind to the NTD and CTD. The latter Co-chaperones usually contain a tetratricopeptide repeat (TPR) domain which binds to a MEEVD motif at the C-terminus of the HSP.[21][31] Inhibition of HSP90 activity by geldanamycin derivatives is based on their binding to the ATP binding site.[15]Client proteins[edit]Client proteins are steroid hormone receptors, kinases, ubiquitin ligases, transcription factors and proteins from many more families.[14][32][33] Examples of HSP90AB1 client proteins are p38MAPK\/MAPK14 (mitogen activated protein kinase 14),[34]ERK5 (extracellular regulated kinase 5),[35] or the checkpoint kinase Wee1.[36]Clinical significance[edit]Cystic fibrosis (CF, mucoviscidosis) is a genetic disease with increased viscosity of various secretions leading to organ failure of lung, pancreas and other organs. It is caused in nearly all cases by a deletion of phenylalanine 508 of CFTR (cystic fibrosis transmembrane conductance regulator). This mutation causes a maturation defect of this ion channel protein with increased degradation, mediated by HSPs. Deletion of the co-chaperone AHA1 (activator of heat shock 90kDa protein ATPase homolog 1) leads to stabilization of CFTR and opens up a perspective for a new therapy.[37]Cancer[edit]HSP90AB1 and its co-chaperones are frequently overexpressed in cancer cells.[38] They are able to stabilize mutant proteins thereby allowing survival and increased proliferation of cancer cells. This renders HSPs potential targets for cancer treatment.[39][40][41] In salivary gland tumors, expression of HSP90AA1 and HSP90AB1 correlates with malignancy, proliferation and metastasis.[42] The same is basically true for lung cancers where a correlation with survival was found.[43]References[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000096384 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000023944 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Rebbe NF, Hickman WS, Ley TJ, Stafford DW, Hickman S (Sep 1989). “Nucleotide sequence and regulation of a human 90-kDa heat shock protein gene”. The Journal of Biological Chemistry. 264 (25): 15006\u201311. doi:10.1016\/S0021-9258(18)63803-7. PMID\u00a02768249.^ Chen B, Piel WH, Gui L, Bruford E, Monteiro A (Dec 2005). “The HSP90 family of genes in the human genome: insights into their divergence and evolution”. Genomics. 86 (6): 627\u201337. doi:10.1016\/j.ygeno.2005.08.012. PMID\u00a016269234.^ “NCBI Gene: HSP90AB1 heat shock protein 90 alpha family class B member 1”. Retrieved 2019-08-30.^ Lindquist S (June 1986). “The heat-shock response”. Annual Review of Biochemistry. 55 (1): 1151\u20131191. doi:10.1146\/annurev.bi.55.070186.005443. PMID\u00a02427013. S2CID\u00a042450279.^ Gething MJ, Sambrook J (Jan 1992). “Protein folding in the cell”. Nature. 355 (6355): 33\u201345. Bibcode:1992Natur.355…33G. doi:10.1038\/355033a0. PMID\u00a01731198. S2CID\u00a04330003.^ Craig EA, Gambill BD, Nelson RJ (Jun 1993). “Heat shock proteins: molecular chaperones of protein biogenesis”. Microbiological Reviews. 57 (2): 402\u201314. doi:10.1128\/MMBR.57.2.402-414.1993. PMC\u00a0372916. PMID\u00a08336673.^ Hartl FU (Jun 1996). “Molecular chaperones in cellular protein folding”. Nature. 381 (6583): 571\u20139. Bibcode:1996Natur.381..571H. doi:10.1038\/381571a0. PMID\u00a08637592. S2CID\u00a04347271.^ Johnson JL, Craig EA (Jul 1997). “Protein folding in vivo: unraveling complex pathways”. Cell. 90 (2): 201\u20134. doi:10.1016\/s0092-8674(00)80327-x. PMID\u00a09244293. S2CID\u00a016824153.^ Wegele H, M\u00fcller L, Buchner J (2004). Hsp70 and Hsp90–a relay team for protein folding. Reviews of Physiology, Biochemistry and Pharmacology. Vol.\u00a0151. pp.\u00a01\u201344. doi:10.1007\/s10254-003-0021-1. ISBN\u00a0978-3-540-22096-1. PMID\u00a014740253.^ a b c Taipale M, Jarosz DF, Lindquist S (Jul 2010). “HSP90 at the hub of protein homeostasis: emerging mechanistic insights”. Nature Reviews Molecular Cell Biology. 11 (7): 515\u201328. doi:10.1038\/nrm2918. PMID\u00a020531426. S2CID\u00a07842137.^ a b Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (Nov 1998). “In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis”. The Journal of Cell Biology. 143 (4): 901\u201310. doi:10.1083\/jcb.143.4.901. PMC\u00a02132952. PMID\u00a09817749.^ “Gene group | HUGO Gene Nomenclature Committee”. HUGO Gene Nomenclature Committee (HGNC). Retrieved 30 August 2019.^ a b Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (Jan 2009). “Guidelines for the nomenclature of the human heat shock proteins”. Cell Stress & Chaperones. 14 (1): 105\u201311. doi:10.1007\/s12192-008-0068-7. PMC\u00a02673902. PMID\u00a018663603.^ “HGNC HSP90 Group”. HUGO Gene Nomenclature Committee (HGNC). Retrieved 30 August 2019.^ Lamphere L, Fiore F, Xu X, Brizuela L, Keezer S, Sardet C, Draetta GF, Gyuris J (Apr 1997). “Interaction between Cdc37 and Cdk4 in human cells”. Oncogene. 14 (16): 1999\u20132004. doi:10.1038\/sj.onc.1201036. PMID\u00a09150368.^ Chen S, Smith DF (Dec 1998). “Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery”. The Journal of Biological Chemistry. 273 (52): 35194\u2013200. doi:10.1074\/jbc.273.52.35194. PMID\u00a09857057.^ a b c d Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (Apr 2000). “Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine”. Cell. 101 (2): 199\u2013210. doi:10.1016\/S0092-8674(00)80830-2. PMID\u00a010786835. S2CID\u00a018200460.^ Young JC, Hoogenraad NJ, Hartl FU (Jan 2003). “Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70”. Cell. 112 (1): 41\u201350. doi:10.1016\/s0092-8674(02)01250-3. PMID\u00a012526792.^ Rebbe NF, Ware J, Bertina RM, Modrich P, Stafford DW (1987). “Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family”. Gene. 53 (2\u20133): 235\u201345. doi:10.1016\/0378-1119(87)90012-6. PMID\u00a03301534.^ Moore SK, Kozak C, Robinson EA, Ullrich SJ, Appella E (1987). “Cloning and nucleotide sequence of the murine hsp84 cDNA and chromosome assignment of related sequences”. Gene. 56 (1): 29\u201340. doi:10.1016\/0378-1119(87)90155-7. PMID\u00a02445630.^ Moore SK, Kozak C, Robinson EA, Ullrich SJ, Appella E (Apr 1989). “Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins”. The Journal of Biological Chemistry. 264 (10): 5343\u201351. doi:10.1016\/S0021-9258(18)83551-7. PMID\u00a02925609.^ Prodromou C, Roe SM, Piper PW, Pearl LH (Jun 1997). “A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone”. Nature Structural Biology. 4 (6): 477\u201382. doi:10.1038\/nsb0697-477. PMID\u00a09187656. S2CID\u00a038764610.^ Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (Apr 1997). “Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent”. Cell. 89 (2): 239\u201350. doi:10.1016\/s0092-8674(00)80203-2. PMID\u00a09108479. S2CID\u00a05253110.^ Harris SF, Shiau AK, Agard DA (Jun 2004). “The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site”. Structure. 12 (6): 1087\u201397. doi:10.1016\/j.str.2004.03.020. PMID\u00a015274928.^ Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (Apr 2006). “Crystal structure of an Hsp90-nucleotide-p23\/Sba1 closed chaperone complex”. Nature. 440 (7087): 1013\u20137. Bibcode:2006Natur.440.1013A. doi:10.1038\/nature04716. PMC\u00a05703407. PMID\u00a016625188.^ Shiau AK, Harris SF, Southworth DR, Agard DA (Oct 2006). “Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements”. Cell. 127 (2): 329\u201340. doi:10.1016\/j.cell.2006.09.027. PMID\u00a017055434. S2CID\u00a0406855.^ Young JC, Obermann WM, Hartl FU (Jul 1998). “Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90”. The Journal of Biological Chemistry. 273 (29): 18007\u201310. doi:10.1074\/jbc.273.29.18007. PMID\u00a09660753.^ Tsaytler PA, Krijgsveld J, Goerdayal SS, R\u00fcdiger S, Egmond MR (Nov 2009). “Novel Hsp90 partners discovered using complementary proteomic approaches”. Cell Stress & Chaperones. 14 (6): 629\u201338. doi:10.1007\/s12192-009-0115-z. PMC\u00a02866955. PMID\u00a019396626.^ Echeverr\u00eda PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011). “An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine”. PLOS ONE. 6 (10): e26044. Bibcode:2011PLoSO…626044E. doi:10.1371\/journal.pone.0026044. PMC\u00a03195953. PMID\u00a022022502.^ Bandyopadhyay S, Chiang CY, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin C, Smoot M, Sahasrabudhe S, Barber DL, Chanda SK, Ideker T (Oct 2010). “A human MAP kinase interactome”. Nature Methods. 7 (10): 801\u20135. doi:10.1038\/nmeth.1506. PMC\u00a02967489. PMID\u00a020936779.^ Erazo T, Moreno A, Ruiz-Babot G, Rodr\u00edguez-Asiain A, Morrice NA, Espadamala J, Bayascas JR, G\u00f3mez N, Lizcano JM (Apr 2013). “Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex”. Molecular and Cellular Biology. 33 (8): 1671\u201386. doi:10.1128\/MCB.01246-12. PMC\u00a03624243. PMID\u00a023428871.^ Aressy B, Jullien D, Cazales M, Marcellin M, Bugler B, Burlet-Schiltz O, Ducommun B (Sep 2010). “A screen for deubiquitinating enzymes involved in the G\u2082\/M checkpoint identifies USP50 as a regulator of HSP90-dependent Wee1 stability”. Cell Cycle. 9 (18): 3815\u201322. doi:10.4161\/cc.9.18.13133. PMID\u00a020930503.^ Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR, Balch WE (Nov 2006). “Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis”. Cell. 127 (4): 803\u201315. doi:10.1016\/j.cell.2006.09.043. PMID\u00a017110338. S2CID\u00a01457851.^ McDowell CL, Bryan Sutton R, Obermann WM (Oct 2009). “Expression of Hsp90 chaperone [corrected] proteins in human tumor tissue”. International Journal of Biological Macromolecules. 45 (3): 310\u20134. doi:10.1016\/j.ijbiomac.2009.06.012. PMID\u00a019576239.^ Den RB, Lu B (Jul 2012). “Heat shock protein 90 inhibition: rationale and clinical potential”. Therapeutic Advances in Medical Oncology. 4 (4): 211\u20138. doi:10.1177\/1758834012445574. PMC\u00a03384095. PMID\u00a022754594.^ Jhaveri K, Taldone T, Modi S, Chiosis G (Mar 2012). “Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers”. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 1823 (3): 742\u201355. doi:10.1016\/j.bbamcr.2011.10.008. PMC\u00a03288123. PMID\u00a022062686.^ Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R (Jun 2013). “Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions”. Cancer Treatment Reviews. 39 (4): 375\u201387. doi:10.1016\/j.ctrv.2012.10.001. PMID\u00a023199899.^ Wang G, Gu X, Chen L, Wang Y, Cao B, E Q (Apr 2013). “Comparison of the expression of 5 heat shock proteins in benign and malignant salivary gland tumor tissues”. Oncology Letters. 5 (4): 1363\u20131369. doi:10.3892\/ol.2013.1166. PMC\u00a03629267. PMID\u00a023599795.^ Biaoxue R, Xiling J, Shuanying Y, Wei Z, Xiguang C, Jinsui W, Min Z (Aug 2012). “Upregulation of Hsp90-beta and annexin A1 correlates with poor survival and lymphatic metastasis in lung cancer patients”. Journal of Experimental & Clinical Cancer Research. 31: 70. doi:10.1186\/1756-9966-31-70. PMC\u00a03444906. PMID\u00a022929401.Further reading[edit]Hoffmann T, Hovemann B (Dec 1988). “Heat-shock proteins, Hsp84 and Hsp86, of mice and men: two related genes encode formerly identified tumour-specific transplantation antigens”. Gene. 74 (2): 491\u2013501. doi:10.1016\/0378-1119(88)90182-5. PMID\u00a02469626.Lees-Miller SP, Anderson CW (Feb 1989). “Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II”. The Journal of Biological Chemistry. 264 (5): 2431\u20137. doi:10.1016\/S0021-9258(19)81631-9. PMID\u00a02492519.Rebbe NF, Ware J, Bertina RM, Modrich P, Stafford DW (1987). “Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family”. Gene. 53 (2\u20133): 235\u201345. doi:10.1016\/0378-1119(87)90012-6. PMID\u00a03301534.Tang PZ, Gannon MJ, Andrew A, Miller D (Nov 1995). “Evidence for oestrogenic regulation of heat shock protein expression in human endometrium and steroid-responsive cell lines”. European Journal of Endocrinology. 133 (5): 598\u2013605. doi:10.1530\/eje.0.1330598. PMID\u00a07581991.Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K (Oct 1995). “Mechanism of dimer formation of the 90-kDa heat-shock protein”. European Journal of Biochemistry. 233 (1): 1\u20138. doi:10.1111\/j.1432-1033.1995.001_1.x. PMID\u00a07588731.Takahashi I, Tanuma R, Hirata M, Hashimoto K (Feb 1994). “A cosmid clone at the D6S182 locus on human chromosome 6p12 contains the 90-kDa heat shock protein beta gene (HSP90 beta)”. Mammalian Genome. 5 (2): 121\u20132. doi:10.1007\/BF00292342. PMID\u00a08180474. S2CID\u00a030075426.Ji H, Reid GE, Moritz RL, Eddes JS, Burgess AW, Simpson RJ (1997). “A two-dimensional gel database of human colon carcinoma proteins”. Electrophoresis. 18 (3\u20134): 605\u201313. doi:10.1002\/elps.1150180344. PMID\u00a09150948. S2CID\u00a025454450.Yano M, Naito Z, Yokoyama M, Shiraki Y, Ishiwata T, Inokuchi M, Asano G (Mar 1999). “Expression of hsp90 and cyclin D1 in human breast cancer”. Cancer Letters. 137 (1): 45\u201351. doi:10.1016\/S0304-3835(98)00338-3. PMID\u00a010376793.Sato S, Fujita N, Tsuruo T (Sep 2000). “Modulation of Akt kinase activity by binding to Hsp90”. Proceedings of the National Academy of Sciences of the United States of America. 97 (20): 10832\u20137. Bibcode:2000PNAS…9710832S. doi:10.1073\/pnas.170276797. PMC\u00a027109. PMID\u00a010995457.Gisler SM, Stagljar I, Traebert M, Bacic D, Biber J, Murer H (Mar 2001). “Interaction of the type IIa Na\/Pi cotransporter with PDZ proteins” (PDF). The Journal of Biological Chemistry. 276 (12): 9206\u201313. doi:10.1074\/jbc.M008745200. PMID\u00a011099500. S2CID\u00a035476933.Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, B\u00f6cher M, Bl\u00f6cker H, Bauersachs S, Blum H, Lauber J, D\u00fcsterh\u00f6ft A, Beyer A, K\u00f6hrer K, Strack N, Mewes HW, Ottenw\u00e4lder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M, Poustka A (Mar 2001). “Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs”. Genome Research. 11 (3): 422\u201335. doi:10.1101\/gr.GR1547R. PMC\u00a0311072. PMID\u00a011230166.King FW, Wawrzynow A, H\u00f6hfeld J, Zylicz M (Nov 2001). “Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53”. The EMBO Journal. 20 (22): 6297\u2013305. doi:10.1093\/emboj\/20.22.6297. PMC\u00a0125724. PMID\u00a011707401.Bouhouche-Chatelier L, Chadli A, Catelli MG (Oct 2001). “The N-terminal adenosine triphosphate binding domain of Hsp90 is necessary and sufficient for interaction with estrogen receptor”. Cell Stress & Chaperones. 6 (4): 297\u2013305. PMC\u00a0434412. PMID\u00a011795466.Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T (Jan 2003). “Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3”. Biochemical and Biophysical Research Communications. 300 (4): 847\u201352. doi:10.1016\/S0006-291X(02)02941-8. hdl:2115\/28121. PMID\u00a012559950. S2CID\u00a01460250.Wu JM, Xiao L, Cheng XK, Cui LX, Wu NH, Shen YF (Dec 2003). “PKC epsilon is a unique regulator for hsp90 beta gene in heat shock response”. The Journal of Biological Chemistry. 278 (51): 51143\u20139. doi:10.1074\/jbc.M305537200. PMID\u00a014532285.Nagaraja GM, Kandpal RP (Jan 2004). “Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins”. Biochemical and Biophysical Research Communications. 313 (3): 654\u201365. doi:10.1016\/j.bbrc.2003.12.001. PMID\u00a014697242.Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (Feb 2004). “A physical and functional map of the human TNF-alpha\/NF-kappa B signal transduction pathway”. Nature Cell Biology. 6 (2): 97\u2013105. doi:10.1038\/ncb1086. PMID\u00a014743216. S2CID\u00a011683986.PDB gallery1byq: HSP90 N-TERMINAL DOMAIN BOUND TO ADP-MG1osf: Human Hsp90 in complex with 17-desmethoxy-17-N,N-Dimethylaminoethylamino-Geldanamycin1uym: HUMAN HSP90-BETA WITH PU3 (9-BUTYL-8(3,4,5-TRIMETHOXY-BENZYL)-9H-PURIN-6-YLAMINE)1yc1: Crystal Structures of human HSP90alpha complexed with dihydroxyphenylpyrazoles1yc3: Crystal Structure of human HSP90alpha complexed with dihydroxyphenylpyrazoles1yc4: Crystal structure of human HSP90alpha complexed with dihydroxyphenylpyrazoles1yer: HUMAN HSP90 GELDANAMYCIN-BINDING DOMAIN, “”CLOSED”” CONFORMATION1yes: HUMAN HSP90 GELDANAMYCIN-BINDING DOMAIN, “”OPEN”” CONFORMATION1yet: GELDANAMYCIN BOUND TO THE HSP90 GELDANAMYCIN-BINDING DOMAIN2bsm: NOVEL, POTENT SMALL MOLECULE INHIBITORS OF THE MOLECULAR CHAPERONE HSP90 DISCOVERED THROUGH STRUCTURE-BASED DESIGN2bt0: NOVEL, POTENT SMALL MOLECULE INHIBITORS OF THE MOLECULAR CHAPERONE HSP90 DISCOVERED THROUGH STRUCTURE-BASED DESIGN2byh: 3-(5-CHLORO-2,4-DIHYDROXYPHENYL)-PYRAZOLE-4-CARBOXAMIDES AS INHIBITORS OF THE HSP90 MOLECULAR CHAPERONE2byi: 3-(5-CHLORO-2,4-DIHYDROXYPHENYL)-PYRAZOLE-4-CARBOXAMIDES AS INHIBITORS OF THE HSP90 MOLECULAR CHAPERONE2bz5: STRUCTURE-BASED DISCOVERY OF A NEW CLASS OF HSP90 INHIBITORS (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/hsp90ab1-wikipedia\/#breadcrumbitem","name":"HSP90AB1 – Wikipedia"}}]}]