[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/late-embryogenesis-abundant-proteins-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/late-embryogenesis-abundant-proteins-wikipedia\/","headline":"Late embryogenesis abundant proteins – Wikipedia","name":"Late embryogenesis abundant proteins – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia This article is missing information about subfamilies like dehydrin; Bray and Dure classification. Please","datePublished":"2019-09-14","dateModified":"2019-09-14","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/en\/thumb\/6\/6c\/Wiki_letter_w.svg\/44px-Wiki_letter_w.svg.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/en\/thumb\/6\/6c\/Wiki_letter_w.svg\/44px-Wiki_letter_w.svg.png","height":"44","width":"44"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/late-embryogenesis-abundant-proteins-wikipedia\/","about":["Wiki"],"wordCount":2502,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopediaThis article is missing information about subfamilies like dehydrin; Bray and Dure classification. Please expand the article to include this information. Further details may exist on the talk page. (April 2020) (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Late embryogenesis abundant proteins (LEA proteins) are proteins in plants, and some bacteria and invertebrates that protect against protein aggregation due to desiccation or osmotic stresses associated with low temperature.[1][2][3] LEA proteins were initially discovered accumulating late in embryogenesis of cotton seeds.[4] Although abundant in seeds and pollens, LEA proteins have been found to protect against desiccation, cold, or high salinity in a variety of organisms, including the bacterium Deinococcus radiodurans, nematode Caenorhabditis elegans, Artemia (brine shrimp), and rotifers.[5][6][2]LEA proteins function by mechanisms which are distinct from those displayed by heat shock molecular chaperones.[1] Although the causes of LEA protein induction have not yet been determined, conformational changes in transcription factors or integral membrane proteins due to water loss have been suggested.[7] LEA proteins are particularly protective of mitochondrial membranes against dehydration damage.[8] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4See also[edit]References[edit]^ a b Goyal, K., Walton, L. J., & Tunnacliffe, A. (2005). “LEA proteins prevent protein aggregation due to water stress”. Biochemical Journal. 388 (Part 1): 151\u2013157. doi:10.1042\/BJ20041931. PMC\u00a01186703. PMID\u00a015631617.{{cite journal}}: CS1 maint: multiple names: authors list (link)^ a b Hundertmark M, Hincha DK (2008). “LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana”. BMC Genomics. 9: 118. doi:10.1186\/1471-2164-9-118. PMC\u00a02292704. PMID\u00a018318901.^ Liu, Y; Chakrabortee, S; Li, R; Zheng, Y; Tunnacliffe, A (18 February 2011). “Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation”. FEBS Letters. 585 (4): 630\u20134. doi:10.1016\/j.febslet.2011.01.020. PMID\u00a021251910. S2CID\u00a023589368.^ Dure L 3rd, Greenway SC, Galau GA (1981). “Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis”. Biochemistry. 20 (14): 4162\u20134168. doi:10.1021\/bi00517a033. PMID\u00a07284317.{{cite journal}}: CS1 maint: multiple names: authors list (link)^ Gal TZ, Glazer I, Koltai H (2004). “An LEA group 3 family member is involved in survival of C. elegans during exposure to stress”. FEBS Letters. 577 (1\u20132): 21\u201326. doi:10.1016\/j.febslet.2004.09.049. PMID\u00a015527756. S2CID\u00a021960486.^ Menze MA, Boswell L, Toner M, Hand SC (2009). “Occurrence of mitochondria-targeted Late Embryogenesis Abundant (LEA) gene in animals increases organelle resistance to water stress”. Journal of Biological Chemistry. 284 (16): 10714\u201310719. doi:10.1074\/jbc.C900001200. PMC\u00a02667758. PMID\u00a019228698.^ Caramelo JJ, Iusem ND (2009). “When cells lose water: Lessons from biophysics and molecular biology”. Progress in Biophysics and Molecular Biology. 99 (1): 1\u20136. doi:10.1016\/j.pbiomolbio.2008.10.001. PMID\u00a018977383.^ Tolleter D, Hincha DK, Macherel D (2010). “A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state”. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1798 (10): 1926\u20131933. doi:10.1016\/j.bbamem.2010.06.029. PMID\u00a020637181. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/late-embryogenesis-abundant-proteins-wikipedia\/#breadcrumbitem","name":"Late embryogenesis abundant proteins – Wikipedia"}}]}]