Multivariate probit model – Wikipedia

From Wikipedia, the free encyclopedia

In statistics and econometrics, the multivariate probit model is a generalization of the probit model used to estimate several correlated binary outcomes jointly. For example, if it is believed that the decisions of sending at least one child to public school and that of voting in favor of a school budget are correlated (both decisions are binary), then the multivariate probit model would be appropriate for jointly predicting these two choices on an individual-specific basis. J.R. Ashford and R.R. Sowden initially proposed an approach for multivariate probit analysis.[1]Siddhartha Chib and Edward Greenberg extended this idea and also proposed simulation-based inference methods for the multivariate probit model which simplified and generalized parameter estimation.[2]

Example: bivariate probit[edit]

In the ordinary probit model, there is only one binary dependent variable

Y{displaystyle Y}

and so only one latent variable

Y{displaystyle Y^{*}}

is used. In contrast, in the bivariate probit model there are two binary dependent variables

Y1{displaystyle Y_{1}}

and

Y2{displaystyle Y_{2}}

, so there are two latent variables:

Y1{displaystyle Y_{1}^{*}}

and

Y2{displaystyle Y_{2}^{*}}

.
It is assumed that each observed variable takes on the value 1 if and only if its underlying continuous latent variable takes on a positive value:

and

Fitting the bivariate probit model involves estimating the values of

β1, β2,{displaystyle beta _{1}, beta _{2},}

and

ρ{displaystyle rho }

. To do so, the likelihood of the model has to be maximized. This likelihood is

Substituting the latent variables

Y1{displaystyle Y_{1}^{*}}

and

Y2{displaystyle Y_{2}^{*}}

in the probability functions and taking logs gives

After some rewriting, the log-likelihood function becomes:

Note that

Φ{displaystyle Phi }

is the cumulative distribution function of the bivariate normal distribution.

Y1{displaystyle Y_{1}}

and

Y2{displaystyle Y_{2}}

in the log-likelihood function are observed variables being equal to one or zero.

Multivariate Probit[edit]

For the general case,

yi=(y1,...,yj), (i=1,...,N){displaystyle mathbf {y_{i}} =(y_{1},…,y_{j}), (i=1,…,N)}

where we can take

j{displaystyle j}

as choices and

i{displaystyle i}

as individuals or observations, the probability of observing choice

yi{displaystyle mathbf {y_{i}} }

is

Where

A=A1××AJ{displaystyle A=A_{1}times cdots times A_{J}}

and,

The log-likelihood function in this case would be

i=1NlogPr(yi|Xiβ,Σ){displaystyle sum _{i=1}^{N}log Pr(mathbf {y_{i}} |mathbf {X_{i}beta } ,Sigma )}

Except for

J2{displaystyle Jleq 2}

typically there is no closed form solution to the integrals in the log-likelihood equation. Instead simulation methods can be used to simulated the choice probabilities. Methods using importance sampling include the GHK algorithm (Geweke, Hajivassilou, McFadden and Keane),[3] AR (accept-reject), Stern’s method. There are also MCMC approaches to this problem including CRB (Chib’s method with Rao-Blackwellization), CRT (Chib, Ritter, Tanner), ARK (accept-reject kernel), and ASK (adaptive sampling kernel).[4] A variational approach scaling to large datasets is proposed in Probit-LMM (Mandt, Wenzel, Nakajima et al.).[5]

References[edit]

  1. ^ Ashford, J.R.; Sowden, R.R. (September 1970). “Multivariate Probit Analysis”. Biometrics. 26 (3): 535–546. doi:10.2307/2529107. JSTOR 2529107. PMID 5480663.
  2. ^ Chib, Siddhartha; Greenberg, Edward (June 1998). “Analysis of multivariate probit models”. Biometrika. 85 (2): 347–361. CiteSeerX 10.1.1.198.8541. doi:10.1093/biomet/85.2.347 – via Oxford Academic.
  3. ^ Hajivassiliou, Vassilis (1994). “Chapter 40 Classical estimation methods for LDV models using simulation”. Handbook of Econometrics. 4: 2383–2441. doi:10.1016/S1573-4412(05)80009-1. ISBN 9780444887665. S2CID 13232902.
  4. ^ Jeliazkov, Ivan (2010). “MCMC perspectives on simulated likelihood estimation”. Advances in Econometrics. 26: 3–39. doi:10.1108/S0731-9053(2010)0000026005. ISBN 978-0-85724-149-8.
  5. ^ Mandt, Stephan; Wenzel, Florian; Nakajima, Shinichi; John, Cunningham; Lippert, Christoph; Kloft, Marius (2017). “Sparse probit linear mixed model” (PDF). Machine Learning. 106 (9–10): 1–22. arXiv:1507.04777. doi:10.1007/s10994-017-5652-6. S2CID 11588006.

Further reading[edit]

  • Greene, William H., Econometric Analysis, seventh edition, Prentice-Hall, 2012.