[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/setdb1-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/setdb1-wikipedia\/","headline":"SETDB1 – Wikipedia","name":"SETDB1 – Wikipedia","description":"From Wikipedia, the free encyclopedia Enzyme-coding gene in humans Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded","datePublished":"2017-08-04","dateModified":"2017-08-04","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/setdb1-wikipedia\/","about":["Wiki"],"wordCount":10191,"articleBody":"From Wikipedia, the free encyclopediaEnzyme-coding gene in humansHistone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene.[5][6] SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.Table of ContentsFunction[edit]Model organisms[edit]Interactions[edit]See also[edit]References[edit]Further reading[edit]External links[edit]Function[edit]The SET domain is a highly conserved, approximately 150-amino acid motif implicated in the modulation of chromatin structure. It was originally identified as part of a larger conserved region present in the Drosophila Trithorax protein and was subsequently identified in the Drosophila Su(var)3-9 and ‘Enhancer of zeste’ proteins, from which the acronym SET is derived. Studies have suggested that the SET domain may be a signature of proteins that modulate transcriptionally active or repressed chromatin states through chromatin remodeling activities.[6]Model organisms[edit]Model organisms have been used in the study of SETDB1 function. A conditional knockout mouse line, called Setdb1tm1a(EUCOMM)Wtsi[12][13] was generated as part of the International Knockout Mouse Consortium program \u2014 a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[14][15][16]Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][17] Twenty seven tests were carried out on mutant mice and four significant abnormalities were observed.[10] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and two significant abnormalities were observed. Females had abnormal peripheral blood lymphocytes data and both sexes displayed increased bone strength and mineral content.[10]Zebrafish are an important model organism to study developmental biology and have been used to study cancer genetics. A screen to identify new oncogenes in melanoma performed in zebrafish identified SETDB1 as an oncogene that cooperates with another cancer gene, BRAF, to accelerate melanoma onset.[18] Subsequent reports have linked SETDB1 to hepatocellular carcinoma [19]Interactions[edit]SETDB1 has been shown to interact with TRIM28.[20]>See also[edit]SETD1A, a protein that is highly homologous to SETDB1References[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000143379 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000015697 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Harte PJ, Wu W, Carrasquillo MM, Matera AG (June 1999). “Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids”. Cytogenet. Cell Genet. 84 (1\u20132): 83\u20136. doi:10.1159\/000015220. PMID\u00a010343109. S2CID\u00a010805552.^ a b “Entrez Gene: SETDB1 SET domain, bifurcated 1”.^ “Peripheral blood lymphocytes data for Setdb1”. Wellcome Trust Sanger Institute.^ “Salmonella infection data for Setdb1″. Wellcome Trust Sanger Institute.^ “Citrobacter infection data for Setdb1″. Wellcome Trust Sanger Institute.^ a b c d Gerdin AK (2010). “The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice”. Acta Ophthalmologica. 88: 925\u20137. doi:10.1111\/j.1755-3768.2010.4142.x. S2CID\u00a085911512.^ Mouse Resources Portal, Wellcome Trust Sanger Institute.^ “International Knockout Mouse Consortium”.^ “Mouse Genome Informatics”.^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). “A conditional knockout resource for the genome-wide study of mouse gene function”. Nature. 474 (7351): 337\u201342. doi:10.1038\/nature10163. PMC\u00a03572410. PMID\u00a021677750.^ Dolgin E (2011). “Mouse library set to be knockout”. Nature. 474 (7351): 262\u20133. doi:10.1038\/474262a. PMID\u00a021677718.^ Collins FS, Rossant J, Wurst W (2007). “A mouse for all reasons”. Cell. 128 (1): 9\u201313. doi:10.1016\/j.cell.2006.12.018. PMID\u00a017218247. S2CID\u00a018872015.^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). “The mouse genetics toolkit: revealing function and mechanism”. Genome Biol. 12 (6): 224. doi:10.1186\/gb-2011-12-6-224. PMC\u00a03218837. PMID\u00a021722353.^ Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferr\u00e9 F, Bourque C, Burke CJ, Turner L, Uong A, Johnson LA, Beroukhim R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA, Zon LI (March 2011). “The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset”. Nature. 471 (7339): 513\u20137. Bibcode:2011Natur.471..513C. doi:10.1038\/nature09806. PMC\u00a03348545. PMID\u00a021430779.^ Fei Q, Shang K, Zhang J, Chuai S, Kong D, Zhou T, Fu S, Liang Y, Li C, Chen Z, Zhao Y, Yu Z, Huang Z, Hu M, Ying H, Chen Z, Zhang Y, Xing F, Zhu J, Xu H, Zhao K, Lu C, Atadja P, Xiao ZX, Li E, Shou J (October 2015). “Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53”. Nat Commun. 6: 8651. Bibcode:2015NatCo…6.8651F. doi:10.1038\/ncomms9651. PMC\u00a05426523. PMID\u00a026471002.^ Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ (April 2002). “SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins”. Genes Dev. 16 (8): 919\u201332. doi:10.1101\/gad.973302. PMC\u00a0152359. PMID\u00a011959841.Further reading[edit]Nomura N, Nagase T, Miyajima N, Sazuka T, Tanaka A, Sato S, Seki N, Kawarabayasi Y, Ishikawa K, Tabata S (1994). “Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1”. DNA Res. 1 (5): 223\u20139. doi:10.1093\/dnares\/1.5.223. PMID\u00a07584044.Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y (2002). “Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor”. Oncogene. 21 (1): 148\u201352. doi:10.1038\/sj.onc.1204998. PMID\u00a011791185.Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ (2002). “SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins”. Genes Dev. 16 (8): 919\u201332. doi:10.1101\/gad.973302. PMC\u00a0152359. PMID\u00a011959841.Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, Krumm AA, Taborsky GJ, Chansky HA (2003). “An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1\/2 and transcription co-repressors mSin3A\/B”. Biochem. J. 369 (Pt 3): 651\u20137. doi:10.1042\/BJ20020854. PMC\u00a01223118. PMID\u00a012398767.Nakayama M, Kikuno R, Ohara O (2002). “Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs”. Genome Res. 12 (11): 1773\u201384. doi:10.1101\/gr.406902. PMC\u00a0187542. PMID\u00a012421765.Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ (2003). “Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation”. Genes Dev. 17 (15): 1855\u201369. doi:10.1101\/gad.1102803. PMC\u00a0196232. PMID\u00a012869583.Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003). “mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression”. Mol. Cell. 12 (2): 475\u201387. doi:10.1016\/j.molcel.2003.08.007. PMID\u00a014536086.Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier MF (2004). “The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins”. Biochem. J. 378 (Pt 2): 353\u201362. doi:10.1042\/BJ20030786. PMC\u00a01223961. PMID\u00a014611647.Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM (2004). “Functional proteomics mapping of a human signaling pathway”. Genome Res. 14 (7): 1324\u201332. doi:10.1101\/gr.2334104. PMC\u00a0442148. PMID\u00a015231748.Sarraf SA, Stancheva I (2004). “Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly”. Mol. Cell. 15 (4): 595\u2013605. doi:10.1016\/j.molcel.2004.06.043. PMID\u00a015327775.Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, B\u00fcssow K, Buessow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE (2004). “A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease”. Mol. Cell. 15 (6): 853\u201365. doi:10.1016\/j.molcel.2004.09.016. PMID\u00a015383276.Ichimura T, Watanabe S, Sakamoto Y, Aoto T, Fujita N, Nakao M (2005). “Transcriptional repression and heterochromatin formation by MBD1 and MCAF\/AM family proteins”. J. Biol. Chem. 280 (14): 13928\u201335. doi:10.1074\/jbc.M413654200. PMID\u00a015691849.Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, van Driel R (2005). “In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation”. Mol. Cell. Biol. 25 (11): 4552\u201364. doi:10.1128\/MCB.25.11.4552-4564.2005. PMC\u00a01140641. PMID\u00a015899859.Gevaert K, Staes A, Van Damme J, De Groot S, Hugelier K, Demol H, Martens L, Goethals M, Vandekerckhove J (2005). “Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC”. Proteomics. 5 (14): 3589\u201399. doi:10.1002\/pmic.200401217. PMID\u00a016097034. S2CID\u00a0895879.Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toks\u00f6z E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005). “A human protein-protein interaction network: a resource for annotating the proteome”. Cell. 122 (6): 957\u201368. doi:10.1016\/j.cell.2005.08.029. hdl:11858\/00-001M-0000-0010-8592-0. PMID\u00a016169070. S2CID\u00a08235923.Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005). “Towards a proteome-scale map of the human protein-protein interaction network”. Nature. 437 (7062): 1173\u20138. Bibcode:2005Natur.437.1173R. doi:10.1038\/nature04209. PMID\u00a016189514. S2CID\u00a04427026.Orouji E, Federico A, Larribere L, Novak D, Lipka DB, Assenov Y, Sachindra S, Hueser L, Granados K, Gebhardt C, Plass C, Umansky V, Utikal J (2019). “Histone methyltransferase SETDB1 contributes to melanoma tumorigenesis and serves as a new potential therapeutic target”. Int J Cancer. 145 (12): 3462\u20133477. doi:10.1002\/ijc.32432. PMID\u00a031131878.Strepkos D, Markouli M, Klonou A, Papavassiliou AG, Piperi C (2021). “Histone methyltransferase SETDB1: A common denominator of tumorigenesis with therapeutic potential”. Cancer Research. 81 (3): 525\u2013534. doi:10.1158\/0008-5472.CAN-20-2906. PMID\u00a033115801. S2CID\u00a0226046421.Cao N, Yu Y, Zhu H, Chen M, Chen P, Zhuo M, Ye M (2020). “SETDB1 promotes the progression of colorectal cancer via epigenetically silencing p21 expression”. Cell Death & Disease. 11 (5): 351. doi:10.1038\/s41419-020-2561-6. PMC\u00a07214465. PMID\u00a032393761.Lee S, Lee C, Hwang CY, Kim D, Han Y, Hong SN, Cho KH (2020). “Network inference analysis identifies SETDB1 as a key regulator for reverting colorectal cancer cells into differentiated normal-like cells”. Molecular Cancer Research. 18 (1): 118\u2013129. doi:10.1158\/1541-7786.MCR-19-0450. PMID\u00a031896605.Fukuda K, Shinkai Y (2020). “SETDB1-Mediated silencing of retroelements”. Viruses. 12 (6): 596. doi:10.3390\/v12060596. PMC\u00a07354471. PMID\u00a032486217.External links[edit]This article incorporates text from the United States National Library of Medicine, which is in the public domain. "},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/setdb1-wikipedia\/#breadcrumbitem","name":"SETDB1 – Wikipedia"}}]}]