[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/stard8-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/stard8-wikipedia\/","headline":"STARD8 – Wikipedia","name":"STARD8 – Wikipedia","description":"From Wikipedia, the free encyclopedia Protein-coding gene in the species Homo sapiens StAR-related lipid transfer domain protein 8 (STARD8) also","datePublished":"2014-06-03","dateModified":"2014-06-03","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/stard8-wikipedia\/","about":["Wiki"],"wordCount":5893,"articleBody":"From Wikipedia, the free encyclopediaProtein-coding gene in the species Homo sapiensStAR-related lipid transfer domain protein 8 (STARD8) also known as deleted in liver cancer 3 protein (DLC-3) is a protein that in humans is encoded by the STARD8 gene[5][6] and is a member of the DLC family.Table of ContentsStructure and function[edit]Tissue distribution and pathology[edit]Model organisms[edit]References[edit]Further reading[edit]Structure and function[edit]The protein is 1103 amino acids long, which like other DLC proteins consists of a sterile alpha motif (SAM), RhoGAP and a StAR-related lipid-transfer (START) domains.[7]The protein is a Rho GTPase-activating protein (GAP), a type of protein that regulates members of the Rho family of GTPases. STARD8 is characterized as activating Rho GTPases. Its expression inhibits the growth of human breast and prostate cancer cells in culture.[7]Tissue distribution and pathology[edit]The protein is expressed in tissues throughout the body, but is absent or reduced in many kinds of tumor cells.[7]While there are no known disorders caused by STARD8, partial loss of the STARD8 gene occurs in cases of craniofrontonasal syndrome where the EFNB1 gene (which causes the syndrome) is completely deleted.[8][9]Model organisms[edit]Model organisms have been used in the study of STARD8 function. A conditional knockout mouse line called Stard8tm1b(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[10] Male and female animals underwent a standardized phenotypic screen[11] to determine the effects of deletion.[12][13][14][15] Additional screens performed: – In-depth immunological phenotyping[16]Stard8 knockout mouse phenotypeCharacteristicPhenotypeAll data available at.[11][16]InsulinNormalHomozygous viability at P14NormalHomozygous FertilityNormalBody weightNormalNeurological assessmentNormalGrip strengthNormalDysmorphologyNormalIndirect calorimetryNormalGlucose tolerance testNormalAuditory brainstem responseNormalDEXANormalRadiographyNormalEye morphologyNormalClinical chemistryNormalHaematology 16 WeeksNormalPeripheral blood leukocytes 16 WeeksNormalHeart weightNormalSalmonella infectionNormalCytotoxic T Cell FunctionNormalSpleen ImmunophenotypingNormalMesenteric Lymph Node ImmunophenotypingNormalEpidermal Immune CompositionNormalInfluenza ChallengeNormalReferences[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000130052 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000031216 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Entrez Gene: StAR-related lipid transfer (START) domain containing 8”.^ Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N (Feb 1996). “Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1”. DNA Research. 3 (1): 17\u201324. doi:10.1093\/dnares\/3.1.17. PMID\u00a08724849.^ a b c Durkin ME, Ullmannova V, Guan M, Popescu NC (Jul 2007). “Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth”. Oncogene. 26 (31): 4580\u20139. doi:10.1038\/sj.onc.1210244. PMID\u00a017297465.^ Twigg SR, Matsumoto K, Kidd AM, Goriely A, Taylor IB, Fisher RB, Hoogeboom AJ, Mathijssen IM, Lourenco MT, Morton JE, Sweeney E, Wilson LC, Brunner HG, Mulliken JB, Wall SA, Wilkie AO (Jun 2006). “The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males”. American Journal of Human Genetics. 78 (6): 999\u20131010. doi:10.1086\/504440. PMC\u00a01474108. PMID\u00a016685650.^ Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, Jakubiczka S, Collmann H, Zuffardi O, Zackai E, Wieacker P (Dec 2007). “Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome”. Clinical Genetics. 72 (6): 506\u201316. doi:10.1111\/j.1399-0004.2007.00905.x. PMID\u00a017941886. S2CID\u00a033823266.^ Gerdin AK (2010). “The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice”. Acta Ophthalmologica. 88: 925\u20137. doi:10.1111\/j.1755-3768.2010.4142.x. S2CID\u00a085911512.^ a b “International Mouse Phenotyping Consortium”.^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). “A conditional knockout resource for the genome-wide study of mouse gene function”. Nature. 474 (7351): 337\u201342. doi:10.1038\/nature10163. PMC\u00a03572410. PMID\u00a021677750.^ Dolgin E (Jun 2011). “Mouse library set to be knockout”. Nature. 474 (7351): 262\u20133. doi:10.1038\/474262a. PMID\u00a021677718.^ Collins FS, Rossant J, Wurst W (Jan 2007). “A mouse for all reasons”. Cell. 128 (1): 9\u201313. doi:10.1016\/j.cell.2006.12.018. PMID\u00a017218247.^ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). “Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes”. Cell. 154 (2): 452\u201364. doi:10.1016\/j.cell.2013.06.022. PMC\u00a03717207. PMID\u00a023870131.^ a b “Infection and Immunity Immunophenotyping (3i) Consortium”.Further reading[edit]Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, Gaunt TR, Pallas J, Lovering R, Li K, Casas JP, Sofat R, Kumari M, Rodriguez S, Johnson T, Newhouse SJ, Dominiczak A, Samani NJ, Caulfield M, Sever P, Stanton A, Shields DC, Padmanabhan S, Melander O, Hastie C, Delles C, Ebrahim S, Marmot MG, Smith GD, Lawlor DA, Munroe PB, Day IN, Kivimaki M, Whittaker J, Humphries SE, Hingorani AD (Nov 2009). “Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip”. American Journal of Human Genetics. 85 (5): 628\u201342. doi:10.1016\/j.ajhg.2009.10.014. PMC\u00a02775832. PMID\u00a019913121.Qian X, Li G, Asmussen HK, Asnaghi L, Vass WC, Braverman R, Yamada KM, Popescu NC, Papageorge AG, Lowy DR (May 2007). “Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities”. Proceedings of the National Academy of Sciences of the United States of America. 104 (21): 9012\u20137. Bibcode:2007PNAS..104.9012Q. doi:10.1073\/pnas.0703033104. PMC\u00a01868654. PMID\u00a017517630.Twigg SR, Matsumoto K, Kidd AM, Goriely A, Taylor IB, Fisher RB, Hoogeboom AJ, Mathijssen IM, Lourenco MT, Morton JE, Sweeney E, Wilson LC, Brunner HG, Mulliken JB, Wall SA, Wilkie AO (Jun 2006). “The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males”. American Journal of Human Genetics. 78 (6): 999\u20131010. doi:10.1086\/504440. PMC\u00a01474108. PMID\u00a016685650.Kawai K, Kiyota M, Seike J, Deki Y, Yagisawa H (Dec 2007). “START-GAP3\/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology”. Biochemical and Biophysical Research Communications. 364 (4): 783\u20139. doi:10.1016\/j.bbrc.2007.10.052. PMID\u00a017976533.Bailey SD, Xie C, Do R, Montpetit A, Diaz R, Mohan V, Keavney B, Yusuf S, Gerstein HC, Engert JC, Anand S (Oct 2010). “Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study”. Diabetes Care. 33 (10): 2250\u20133. doi:10.2337\/dc10-0452. PMC\u00a02945168. PMID\u00a020628086. "},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/stard8-wikipedia\/#breadcrumbitem","name":"STARD8 – Wikipedia"}}]}]