[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/tetradic-palatini-action-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/tetradic-palatini-action-wikipedia\/","headline":"Tetradic Palatini action – Wikipedia","name":"Tetradic Palatini action – Wikipedia","description":"The Einstein\u2013Hilbert action for general relativity was first formulated purely in terms of the space-time metric. To take the metric","datePublished":"2015-08-10","dateModified":"2015-08-10","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/wikimedia.org\/api\/rest_v1\/media\/math\/render\/svg\/95fcaeef19e421b00d994f8726b775199a9532e1","url":"https:\/\/wikimedia.org\/api\/rest_v1\/media\/math\/render\/svg\/95fcaeef19e421b00d994f8726b775199a9532e1","height":"","width":""},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/tetradic-palatini-action-wikipedia\/","wordCount":28883,"articleBody":"The Einstein\u2013Hilbert action for general relativity was first formulated purely in terms of the space-time metric. To take the metric and affine connection as independent variables in the action principle was first considered by Palatini.[1] It is called a first order formulation as the variables to vary over involve only up to first derivatives in the action and so doesn’t overcomplicate the Euler\u2013Lagrange equations with higher derivative terms. The tetradic Palatini action is another first-order formulation of the Einstein\u2013Hilbert action in terms of a different pair of independent variables, known as frame fields and the spin connection. The use of frame fields and spin connections are essential in the formulation of a generally covariant fermionic action (see the article spin connection for more discussion of this) which couples fermions to gravity when added to the tetradic Palatini action.Not only is this needed to couple fermions to gravity and makes the tetradic action somehow more fundamental to the metric version, the Palatini action is also a stepping stone to more interesting actions like the self-dual Palatini action which can be seen as the Lagrangian basis for Ashtekar’s formulation of canonical gravity (see Ashtekar’s variables) or the Holst action which is the basis of the real variables version of Ashtekar’s theory. Another important action is the Plebanski action (see the entry on the Barrett\u2013Crane model), and proving that it gives general relativity under certain conditions involves showing it reduces to the Palatini action under these conditions.Here we present definitions and calculate Einstein’s equations from the Palatini action in detail. These calculations can be easily modified for the self-dual Palatini action and the Holst action.Table of ContentsSome definitions[edit]The tetradic Palatini action[edit]Generalizations of the Palatini action[edit]Details of calculation[edit]Relating usual curvature to the mixed index curvature[edit]Difference between curvatures[edit]Varying the action with respect to the field C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}}[ C \u03b1 I J {displaystyle {C_{alpha }}^{IJ}} “>edit]Vanishing of C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}}[ C \u03b1 I J {displaystyle {C_{alpha }}^{IJ}} “>edit]See also[edit]References[edit]Some definitions[edit]We first need to introduce the notion of tetrads. A tetrad is an orthonormal vector basis in terms of which the space-time metric looks locally flat,g\u03b1\u03b2=e\u03b1Ie\u03b2J\u03b7IJ{displaystyle g_{alpha beta }=e_{alpha }^{I}e_{beta }^{J}eta _{IJ}}where \u03b7IJ=diag(\u22121,1,1,1){displaystyle eta _{IJ}={text{diag}}(-1,1,1,1)} is the Minkowski metric. The tetrads encode the information about the space-time metric and will be taken as one of the independent variables in the action principle.Now if one is going to operate on objects that have internal indices one needs to introduce an appropriate derivative (covariant derivative). We introduce an arbitrary covariant derivative viaD\u03b1VI=\u2202\u03b1VI+\u03c9\u03b1IJVJ.{displaystyle {mathcal {D}}_{alpha }V_{I}=partial _{alpha }V_{I}+{omega _{alpha I}}^{J}V_{J}.}Where \u03c9\u03b1IJ{displaystyle {omega _{alpha I}}^{J}} is a spin (Lorentz) connection one-form (the derivative annihilates the Minkowski metric \u03b7IJ{displaystyle eta _{IJ}}). We define a curvature via\u03a9\u03b1\u03b2IJVJ=(D\u03b1D\u03b2\u2212D\u03b2D\u03b1)VI{displaystyle {Omega _{alpha beta I}}^{J}V_{J}=({mathcal {D}}_{alpha }{mathcal {D}}_{beta }-{mathcal {D}}_{beta }{mathcal {D}}_{alpha })V_{I}}We obtain\u03a9\u03b1\u03b2IJ=2\u2202[\u03b1\u03c9\u03b2]IJ+2\u03c9[\u03b1IK\u03c9\u03b2]KJ{displaystyle {Omega _{alpha beta }}^{IJ}=2partial _{[alpha }{omega _{beta ]}}^{IJ}+2{omega _{[alpha }}^{IK}{omega _{beta ]K}}^{J}}.We introduce the covariant derivative which annihilates the tetrad,\u2207\u03b1e\u03b2I=0{displaystyle nabla _{alpha }e_{beta }^{I}=0}.The connection is completely determined by the tetrad. The action of this on the generalized tensor V\u03b2I{displaystyle V_{beta }^{I}} is given by\u2207\u03b1V\u03b2I=\u2202\u03b1V\u03b2I\u2212\u0393\u03b1\u03b2\u03b3V\u03b3I+\u03c9\u03b1JIV\u03b2J.{displaystyle nabla _{alpha }V_{beta }^{I}=partial _{alpha }V_{beta }^{I}-Gamma _{alpha beta }^{gamma }V_{gamma }^{I}+{omega _{alpha J}}^{I}V_{beta }^{J}.}We define a curvature R\u03b1\u03b2IJ{displaystyle {R_{alpha beta }}^{IJ}} byR\u03b1\u03b2IJVJ=(\u2207\u03b1\u2207\u03b2\u2212\u2207\u03b2\u2207\u03b1)VI.{displaystyle {R_{alpha beta I}}^{J}V_{J}=(nabla _{alpha }nabla _{beta }-nabla _{beta }nabla _{alpha })V_{I}.}This is easily related to the usual curvature defined byR\u03b1\u03b2\u03b3\u03b4V\u03b4=(\u2207\u03b1\u2207\u03b2\u2212\u2207\u03b2\u2207\u03b1)V\u03b3{displaystyle {R_{alpha beta gamma }}^{delta }V_{delta }=(nabla _{alpha }nabla _{beta }-nabla _{beta }nabla _{alpha })V_{gamma }}via substituting V\u03b3=VIe\u03b3I{displaystyle V_{gamma }=V_{I}e_{gamma }^{I}} into this expression (see below for details). One obtains,R\u03b1\u03b2\u03b3\u03b4=e\u03b3IR\u03b1\u03b2IJeJ\u03b4,R\u03b1\u03b2=R\u03b1\u03b3IJe\u03b2IeJ\u03b3,R=R\u03b1\u03b2IJeI\u03b1eJ\u03b2{displaystyle {R_{alpha beta gamma }}^{delta }=e_{gamma }^{I}{R_{alpha beta I}}^{J}e_{J}^{delta },quad R_{alpha beta }={R_{alpha gamma I}}^{J}e_{beta }^{I}e_{J}^{gamma },R={R_{alpha beta }}^{IJ}e_{I}^{alpha }e_{J}^{beta }}for the Riemann tensor, Ricci tensor and Ricci scalar respectively.The tetradic Palatini action[edit]The Ricci scalar of this curvature can be expressed as eI\u03b1eJ\u03b2\u03a9\u03b1\u03b2IJ.{displaystyle e_{I}^{alpha }e_{J}^{beta }{Omega _{alpha beta }}^{IJ}.} The action can be writtenSH\u2212P=\u222bd4xeeI\u03b1eJ\u03b2\u03a9\u03b1\u03b2IJ{displaystyle S_{H-P}=int d^{4}x;e;e_{I}^{alpha }e_{J}^{beta }{Omega _{alpha beta }}^{IJ}}where e=\u2212g{displaystyle e={sqrt {-g}}} but now g{displaystyle g} is a function of the frame field.We will derive the Einstein equations by varying this action with respect to the tetrad and spin connection as independent quantities.As a shortcut to performing the calculation we introduce a connection compatible with the tetrad, \u2207\u03b1e\u03b2I=0.{displaystyle nabla _{alpha }e_{beta }^{I}=0.}[2] The connection associated with this covariant derivative is completely determined by the tetrad. The difference between the two connections we have introduced is a field C\u03b1IJ{displaystyle {C_{alpha I}}^{J}} defined byC\u03b1IJVJ=(D\u03b1\u2212\u2207\u03b1)VI.{displaystyle {C_{alpha I}}^{J}V_{J}=left(D_{alpha }-nabla _{alpha }right)V_{I}.}We can compute the difference between the curvatures of these two covariant derivatives (see below for details),\u03a9\u03b1\u03b2IJ\u2212R\u03b1\u03b2IJ=\u2207[\u03b1C\u03b2]IJ+C[\u03b1IMC\u03b2]MJ{displaystyle {Omega _{alpha beta }}^{IJ}-{R_{alpha beta }}^{IJ}=nabla _{[alpha }{C_{beta ]}}^{IJ}+{C_{[alpha }}^{IM}{C_{beta ]M}}^{J}}The reason for this intermediate calculation is that it is easier to compute the variation by reexpressing the action in terms of \u2207{displaystyle nabla } and C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}} and noting that the variation with respect to \u03c9\u03b1IJ{displaystyle {omega _{alpha }}^{IJ}} is the same as the variation with respect to C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}} (when keeping the tetrad fixed). The action becomesSH\u2212P=\u222bd4xeeI\u03b1eJ\u03b2(R\u03b1\u03b2IJ+\u2207[\u03b1C\u03b2]IJ+C[\u03b1IMC\u03b2]MJ){displaystyle S_{H-P}=int d^{4}x;e;e_{I}^{alpha }e_{J}^{beta }left({R_{alpha beta }}^{IJ}+nabla _{[alpha }{C_{beta ]}}^{IJ}+{C_{[alpha }}^{IM}{C_{beta ]M}}^{J}right)}We first vary with respect to C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}}. The first term does not depend on C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}} so it does not contribute. The second term is a total derivative. The last term yieldseM[aeNb]\u03b4[IM\u03b4J]KCbKN=0.{displaystyle e_{M}^{[a}e_{N}^{b]}delta _{[I}^{M}delta _{J]}^{K}{C_{bK}}^{N}=0.}We show below that this implies that C\u03b1IJ=0{displaystyle {C_{alpha }}^{IJ}=0} as the prefactor eM[aeNb]\u03b4[IM\u03b4J]K{displaystyle e_{M}^{[a}e_{N}^{b]}delta _{[I}^{M}delta _{J]}^{K}} is non-degenerate. This tells us that \u2207{displaystyle nabla } coincides with D{displaystyle D} when acting on objects with only internal indices. Thus the connection D{displaystyle D} is completely determined by the tetrad and \u03a9{displaystyle Omega } coincides with R{displaystyle R}. To compute the variation with respect to the tetrad we need the variation of e=dete\u03b1I{displaystyle e=det e_{alpha }^{I}}. From the standard formula\u03b4det(a)=det(a)(a\u22121)ji\u03b4aij{displaystyle delta det(a)=det(a)left(a^{-1}right)_{ji}delta a_{ij}}we have \u03b4e=eeI\u03b1\u03b4e\u03b1I{displaystyle delta e=ee_{I}^{alpha }delta e_{alpha }^{I}}. Or upon using \u03b4(e\u03b1IeI\u03b1)=0{displaystyle delta left(e_{alpha }^{I}e_{I}^{alpha }right)=0}, this becomes \u03b4e=\u2212ee\u03b1I\u03b4eI\u03b1{displaystyle delta e=-ee_{alpha }^{I}delta e_{I}^{alpha }}. We compute the second equation by varying with respect to the tetrad,\u03b4SH\u2212P=\u222bd4xe((\u03b4eI\u03b1)eJ\u03b2\u03a9\u03b1\u03b2IJ+eI\u03b1(\u03b4eJ\u03b2)\u03a9\u03b1\u03b2IJ\u2212e\u03b3K(\u03b4eK\u03b3)eI\u03b1eJ\u03b2\u03a9\u03b1\u03b2IJ)=2\u222bd4xe(eJ\u03b2\u03a9\u03b1\u03b2IJ\u221212eM\u03b3eN\u03b4e\u03b1I\u03a9\u03b3\u03b4MN)(\u03b4eI\u03b1){displaystyle {begin{aligned}delta S_{H-P}&=int d^{4}x;eleft(left(delta e_{I}^{alpha }right)e_{J}^{beta }{Omega _{alpha beta }}^{IJ}+e_{I}^{alpha }left(delta e_{J}^{beta }right){Omega _{alpha beta }}^{IJ}-e_{gamma }^{K}left(delta e_{K}^{gamma }right)e_{I}^{alpha }e_{J}^{beta }{Omega _{alpha beta }}^{IJ}right)\\&=2int d^{4}x;eleft(e_{J}^{beta }{Omega _{alpha beta }}^{IJ}-{1 over 2}e_{M}^{gamma }e_{N}^{delta }e_{alpha }^{I}{Omega _{gamma delta }}^{MN}right)left(delta e_{I}^{alpha }right)end{aligned}}}One gets, after substituting \u03a9\u03b1\u03b2IJ{displaystyle {Omega _{alpha beta }}^{IJ}} for R\u03b1\u03b2IJ{displaystyle {R_{alpha beta }}^{IJ}} as given by the previous equation of motion,eJ\u03b3R\u03b1\u03b3IJ\u221212R\u03b3\u03b4MNeM\u03b3eN\u03b4e\u03b1I=0{displaystyle e_{J}^{gamma }{R_{alpha gamma }}^{IJ}-{1 over 2}{R_{gamma delta }}^{MN}e_{M}^{gamma }e_{N}^{delta }e_{alpha }^{I}=0}which, after multiplication by eI\u03b2{displaystyle e_{Ibeta }} just tells us that the Einstein tensor R\u03b1\u03b2\u221212Rg\u03b1\u03b2{displaystyle R_{alpha beta }-{tfrac {1}{2}}Rg_{alpha beta }} of the metric defined by the tetrads vanishes. We have therefore proved that the Palatini variation of the action in tetradic form yields the usual Einstein equations.Generalizations of the Palatini action[edit]We change the action by adding a term\u221212\u03b3eeI\u03b1eJ\u03b2\u03a9\u03b1\u03b2MN[\u03c9]\u03f5IJMN{displaystyle -{1 over 2gamma }ee_{I}^{alpha }e_{J}^{beta }{Omega _{alpha beta }}^{MN}[omega ]{epsilon ^{IJ}}_{MN}}This modifies the Palatini action toS=\u222bd4xeeI\u03b1eJ\u03b2PIJMN\u03a9\u03b1\u03b2MN{displaystyle S=int d^{4}x;e;e_{I}^{alpha }e_{J}^{beta }{P^{IJ}}_{MN}{Omega _{alpha beta }}^{MN}}wherePIJMN=\u03b4M[I\u03b4NJ]\u221212\u03b3\u03f5IJMN.{displaystyle {P^{IJ}}_{MN}=delta _{M}^{[I}delta _{N}^{J]}-{1 over 2gamma }{epsilon ^{IJ}}_{MN}.}This action given above is the Holst action, introduced by Holst[3] and \u03b3{displaystyle gamma } is the Barbero-Immirzi parameter whose role was recognized by Barbero[4] and Immirizi.[5] The self dual formulation corresponds to the choice \u03b3=\u2212i{displaystyle gamma =-i}.It is easy to show these actions give the same equations. However, the case corresponding to \u03b3=\u00b1i{displaystyle gamma =pm i} must be done separately (see article self-dual Palatini action). Assume \u03b3\u2260\u00b1i{displaystyle gamma not =pm i}, then PIJMN{displaystyle {P^{IJ}}_{MN}} has an inverse given by(P\u22121)IJMN=\u03b32\u03b32+1(\u03b4I[M\u03b4JN]+12\u03b3\u03f5IJMN).{displaystyle {(P^{-1})_{IJ}}^{MN}={frac {gamma ^{2}}{gamma ^{2}+1}}left(delta _{I}^{[M}delta _{J}^{N]}+{frac {1}{2gamma }}{epsilon _{IJ}}^{MN}right).}(note this diverges for \u03b3=\u00b1i{displaystyle gamma =pm i}). As this inverse exists the generalization of the prefactor eM[aeNb]\u03b4[IM\u03b4J]K{displaystyle e_{M}^{[a}e_{N}^{b]}delta _{[I}^{M}delta _{J]}^{K}} will also be non-degenerate and as such equivalent conditions are obtained from variation with respect to the connection. We again obtain C\u03b1IJ=0{displaystyle {C_{alpha }}^{IJ}=0}. While variation with respect to the tetrad yields Einstein’s equation plus an additional term. However, this extra term vanishes by symmetries of the Riemann tensor.Details of calculation[edit]Relating usual curvature to the mixed index curvature[edit]The usual Riemann curvature tensor R\u03b1\u03b2\u03b3\u03b4{displaystyle {R_{alpha beta gamma }}^{delta }} is defined byR\u03b1\u03b2\u03b3\u03b4V\u03b4=(\u2207\u03b1\u2207\u03b2\u2212\u2207\u03b2\u2207\u03b1)V\u03b3.{displaystyle {R_{alpha beta gamma }}^{delta }V_{delta }=left(nabla _{alpha }nabla _{beta }-nabla _{beta }nabla _{alpha }right)V_{gamma }.}To find the relation to the mixed index curvature tensor let us substitute V\u03b3=e\u03b3IVI{displaystyle V_{gamma }=e_{gamma }^{I}V_{I}}R\u03b1\u03b2\u03b3\u03b4V\u03b4=(\u2207\u03b1\u2207\u03b2\u2212\u2207\u03b2\u2207\u03b1)V\u03b3=(\u2207\u03b1\u2207\u03b2\u2212\u2207\u03b2\u2207\u03b1)(e\u03b3IVI)=e\u03b3I(\u2207\u03b1\u2207\u03b2\u2212\u2207\u03b2\u2207\u03b1)VI=e\u03b3IR\u03b1\u03b2IJeJ\u03b4V\u03b4{displaystyle {begin{aligned}{R_{alpha beta gamma }}^{delta }V_{delta }&=left(nabla _{alpha }nabla _{beta }-nabla _{beta }nabla _{alpha }right)V_{gamma }\\&=left(nabla _{alpha }nabla _{beta }-nabla _{beta }nabla _{alpha }right)left(e_{gamma }^{I}V_{I}right)\\&=e_{gamma }^{I}left(nabla _{alpha }nabla _{beta }-nabla _{beta }nabla _{alpha }right)V_{I}\\&=e_{gamma }^{I}{R_{alpha beta I}}^{J}e_{J}^{delta }V_{delta }end{aligned}}}where we have used \u2207\u03b1e\u03b2I=0{displaystyle nabla _{alpha }e_{beta }^{I}=0}. Since this is true for all V\u03b4{displaystyle V_{delta }} we obtainR\u03b1\u03b2\u03b3\u03b4=e\u03b3IR\u03b1\u03b2IJeJ\u03b4{displaystyle {R_{alpha beta gamma }}^{delta }=e_{gamma }^{I}{R_{alpha beta I}}^{J}e_{J}^{delta }}.Using this expression we findR\u03b1\u03b2=R\u03b1\u03b3\u03b2\u03b3=R\u03b1\u03b3IJe\u03b2IeJ\u03b3.{displaystyle R_{alpha beta }={R_{alpha gamma beta }}^{gamma }={R_{alpha gamma I}}^{J}e_{beta }^{I}e_{J}^{gamma }.}Contracting over \u03b1{displaystyle alpha } and \u03b2{displaystyle beta } allows us write the Ricci scalarR=R\u03b1\u03b2IJeI\u03b1eJ\u03b2.{displaystyle R={R_{alpha beta }}^{IJ}e_{I}^{alpha }e_{J}^{beta }.}Difference between curvatures[edit]The derivative defined by D\u03b1VI{displaystyle D_{alpha }V_{I}} only knows how to act on internal indices. However, we find it convenient to consider a torsion-free extension to spacetime indices. All calculations will be independent of this choice of extension. Applying Da{displaystyle {mathcal {D}}_{a}} twice on VI{displaystyle V_{I}},D\u03b1D\u03b2VI=D\u03b1(\u2207\u03b2VI+C\u03b2IJVJ)=\u2207\u03b1(\u2207\u03b2VI+C\u03b2IJVJ)+C\u03b1IK(\u2207bVK+C\u03b2KJVJ)+\u0393\u00af\u03b1\u03b2\u03b3(\u2207\u03b3VI+C\u03b3IJVJ){displaystyle {mathcal {D}}_{alpha }{mathcal {D}}_{beta }V_{I}={mathcal {D}}_{alpha }(nabla _{beta }V_{I}+{C_{beta I}}^{J}V_{J})=nabla _{alpha }left(nabla _{beta }V_{I}+{C_{beta I}}^{J}V_{J}right)+{C_{alpha I}}^{K}left(nabla _{b}V_{K}+{C_{beta K}}^{J}V_{J}right)+{overline {Gamma }}_{alpha beta }^{gamma }left(nabla _{gamma }V_{I}+{C_{gamma I}}^{J}V_{J}right)}where \u0393\u00af\u03b1\u03b2\u03b3{displaystyle {overline {Gamma }}_{alpha beta }^{gamma }} is unimportant, we need only note that it is symmetric in \u03b1{displaystyle alpha } and \u03b2{displaystyle beta } as it is torsion-free. Then\u03a9\u03b1\u03b2IJVJ=(D\u03b1D\u03b2\u2212D\u03b2D\u03b1)VI=(\u2207\u03b1\u2207\u03b2\u2212\u2207\u03b2\u2207\u03b1)VI+\u2207\u03b1(C\u03b2IJVJ)\u2212\u2207\u03b2(C\u03b1IJVJ)+C\u03b1IK\u2207\u03b2VK\u2212C\u03b2IK\u2207\u03b1VK+C\u03b1IKC\u03b2KJVJ\u2212C\u03b2IKC\u03b1KJVJ=R\u03b1\u03b2IJVJ+(\u2207\u03b1C\u03b2IJ\u2212\u2207\u03b2C\u03b1IJ+C\u03b1IKC\u03b2KJ\u2212C\u03b2IKC\u03b1KJ)VJ{displaystyle {begin{aligned}{Omega _{alpha beta I}}^{J}V_{J}&=left({mathcal {D}}_{alpha }{mathcal {D}}_{beta }-{mathcal {D}}_{beta }{mathcal {D}}_{alpha }right)V_{I}\\&=left(nabla _{alpha }nabla _{beta }-nabla _{beta }nabla _{alpha }right)V_{I}+nabla _{alpha }left({C_{beta I}}^{J}V_{J}right)-nabla _{beta }left({C_{alpha I}}^{J}V_{J}right)+{C_{alpha I}}^{K}nabla _{beta }V_{K}-{C_{beta I}}^{K}nabla _{alpha }V_{K}+{C_{alpha I}}^{K}{C_{beta K}}^{J}V_{J}-{C_{beta I}}^{K}{C_{alpha K}}^{J}V_{J}\\&={R_{alpha beta I}}^{J}V_{J}+left(nabla _{alpha }{C_{beta I}}^{J}-nabla _{beta }{C_{alpha I}}^{J}+{C_{alpha I}}^{K}{C_{beta K}}^{J}-{C_{beta _{I}}}^{K}{C_{alpha K}}^{J}right)V_{J}end{aligned}}}Hence:\u03a9abIJ\u2212RabIJ=2\u2207[aCb]IJ+2C[aIKCb]KJ{displaystyle {Omega _{ab}}^{IJ}-{R_{ab}}^{IJ}=2nabla _{[a}{C_{b]}}^{IJ}+2{C_{[a}}^{IK}{C_{b]K}}^{J}}Varying the action with respect to the field C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}}[ C \u03b1 I J {displaystyle {C_{alpha }}^{IJ}} “>edit]We would expect \u2207a{displaystyle nabla _{a}} to also annihilate the Minkowski metric \u03b7IJ=e\u03b2IeJ\u03b2{displaystyle eta _{IJ}=e_{beta I}e_{J}^{beta }}. If we also assume that the covariant derivative D\u03b1{displaystyle {mathcal {D}}_{alpha }} annihilates the Minkowski metric (then said to be torsion-free) we have,0=(D\u03b1\u2212\u2207\u03b1)\u03b7IJ=C\u03b1IK\u03b7KJ+CaJK\u03b7IK=C\u03b1IJ+C\u03b1JI.{displaystyle 0=({mathcal {D}}_{alpha }-nabla _{alpha })eta _{IJ}={C_{alpha I}}^{K}eta _{KJ}+{C_{aJ}}^{K}eta _{IK}=C_{alpha IJ}+C_{alpha JI}.}ImplyingC\u03b1IJ=C\u03b1[IJ].{displaystyle C_{alpha IJ}=C_{alpha [IJ]}.}From the last term of the action we have from varying with respect to C\u03b1IJ,{displaystyle {C_{alpha I}}^{J},}\u03b4SEH=\u03b4\u222bd4xeeM\u03b3eN\u03b2C[\u03b3MKC\u03b2]KN=\u03b4\u222bd4xeeM[\u03b3eN\u03b2]C\u03b3MKC\u03b2KN=\u03b4\u222bd4xeeM[\u03b3eN\u03b2]C\u03b3MKC\u03b2KN=\u222bd4xeeM[\u03b3eN\u03b2](\u03b4\u03b3\u03b1\u03b4MI\u03b4JKC\u03b2KN+C\u03b3MK\u03b4\u03b2\u03b1\u03b4KI\u03b4JN)\u03b4C\u03b1IJ=\u222bd4xe(eI[\u03b1eN\u03b2]C\u03b2JN+eM[\u03b2eJ\u03b1]C\u03b2MI)\u03b4C\u03b1IJ{displaystyle {begin{aligned}delta S_{EH}&=delta int d^{4}x;e;e_{M}^{gamma }e_{N}^{beta }{C_{[gamma }}^{MK}{C_{beta ]K}}^{N}\\&=delta int d^{4}x;e;e_{M}^{[gamma }e_{N}^{beta ]}{C_{gamma }}^{MK}{C_{beta K}}^{N}\\&=delta int d^{4}x;e;e^{M[gamma }e_{N}^{beta ]}{C_{gamma M}}^{K}{C_{beta K}}^{N}\\&=int d^{4}x;ee^{M[gamma }e_{N}^{beta ]}left(delta _{gamma }^{alpha }delta _{M}^{I}delta _{J}^{K}{C_{beta K}}^{N}+{C_{gamma M}}^{K}delta _{beta }^{alpha }delta _{K}^{I}delta _{J}^{N}right)delta {C_{alpha I}}^{J}\\&=int d^{4}x;eleft(e^{I[alpha }e_{N}^{beta ]}{C_{beta J}}^{N}+e^{M[beta }e_{J}^{alpha ]}{C_{beta M}}^{I}right)delta {C_{alpha I}}^{J}end{aligned}}}oreI[\u03b1eK\u03b2]C\u03b2JK+eK[\u03b2eJ\u03b1]C\u03b2KI=0{displaystyle e_{I}^{[alpha }e_{K}^{beta ]}{C_{beta J}}^{K}+e^{K[beta }e_{J}^{alpha ]}C_{beta KI}=0}orC\u03b2IKeK[\u03b1eJ\u03b2]+C\u03b2JKeI[\u03b1eK\u03b2]=0.{displaystyle {C_{beta I}}^{K}e_{K}^{[alpha }e_{J}^{beta ]}+{C_{beta J}}^{K}e_{I}^{[alpha }e_{K}^{beta ]}=0.}where we have used C\u03b2KI=\u2212C\u03b2IK{displaystyle C_{beta KI}=-C_{beta IK}}. This can be written more compactly aseM[\u03b1eN\u03b2]\u03b4[IM\u03b4J]KC\u03b2KN=0.{displaystyle e_{M}^{[alpha }e_{N}^{beta ]}delta _{[I}^{M}delta _{J]}^{K}{C_{beta K}}^{N}=0.}Vanishing of C\u03b1IJ{displaystyle {C_{alpha }}^{IJ}}[ C \u03b1 I J {displaystyle {C_{alpha }}^{IJ}} “>edit]We will show following the reference “Geometrodynamics vs. Connection Dynamics”[6] thatC\u03b2IKeK[\u03b1eJ\u03b2]+C\u03b2JKeI[\u03b1eK\u03b2]=0Eq.1{displaystyle {C_{beta I}}^{K}e_{K}^{[alpha }e_{J}^{beta ]}+{C_{beta J}}^{K}e_{I}^{[alpha }e_{K}^{beta ]}=0quad Eq.1}implies C\u03b1IJ=0.{displaystyle {C_{alpha I}}^{J}=0.} First we define the spacetime tensor field byS\u03b1\u03b2\u03b3:=C\u03b1IJe\u03b2Ie\u03b3J.{displaystyle S_{alpha beta gamma }:=C_{alpha IJ}e_{beta }^{I}e_{gamma }^{J}.}Then the condition C\u03b1IJ=C\u03b1[IJ]{displaystyle C_{alpha IJ}=C_{alpha [IJ]}} is equivalent to S\u03b1\u03b2\u03b3=S\u03b1[\u03b2\u03b3]{displaystyle S_{alpha beta gamma }=S_{alpha [beta gamma ]}}. Contracting Eq. 1 with e\u03b1Ie\u03b3J{displaystyle e_{alpha }^{I}e_{gamma }^{J}} one calculates thatC\u03b2JIe\u03b3JeI\u03b2=0.{displaystyle {C_{beta J}}^{I}e_{gamma }^{J}e_{I}^{beta }=0.}As S\u03b1\u03b2\u03b3=C\u03b1IJe\u03b2IeJ\u03b3,{displaystyle {S_{alpha beta }}^{gamma }={C_{alpha I}}^{J}e_{beta }^{I}e_{J}^{gamma },} we have S\u03b2\u03b3\u03b2=0.{displaystyle {S_{beta gamma }}^{beta }=0.} We write it as(C\u03b2IJeJ\u03b2)e\u03b3I=0,{displaystyle ({C_{beta I}}^{J}e_{J}^{beta })e_{gamma }^{I}=0,}and as e\u03b1I{displaystyle e_{alpha }^{I}} are invertible this impliesC\u03b2IJeJ\u03b2=0.{displaystyle {C_{beta I}}^{J}e_{J}^{beta }=0.}Thus the terms C\u03b2IKeK\u03b2eJ\u03b1,{displaystyle {C_{beta I}}^{K}e_{K}^{beta }e_{J}^{alpha },} and C\u03b2JKeI\u03b1eK\u03b2{displaystyle {C_{beta J}}^{K}e_{I}^{alpha }e_{K}^{beta }} of Eq. 1 both vanish and Eq. 1 reduces toC\u03b2IKeK\u03b1eJ\u03b2\u2212C\u03b2JKeI\u03b2eK\u03b1=0.{displaystyle {C_{beta I}}^{K}e_{K}^{alpha }e_{J}^{beta }-{C_{beta J}}^{K}e_{I}^{beta }e_{K}^{alpha }=0.}If we now contract this with e\u03b3Ie\u03b4J{displaystyle e_{gamma }^{I}e_{delta }^{J}}, we get0=(C\u03b2IKeK\u03b1eJ\u03b2\u2212C\u03b2JKeI\u03b2eK\u03b1)e\u03b3Ie\u03b4J=C\u03b2IKeK\u03b1e\u03b3I\u03b4\u03b4\u03b2\u2212C\u03b2JK\u03b4\u03b3\u03b2eK\u03b1e\u03b4J=C\u03b4IKe\u03b3IeK\u03b1\u2212C\u03b3JKe\u03b4JeK\u03b1{displaystyle {begin{aligned}0&=left({C_{beta I}}^{K}e_{K}^{alpha }e_{J}^{beta }-{C_{beta J}}^{K}e_{I}^{beta }e_{K}^{alpha }right)e_{gamma }^{I}e_{delta }^{J}\\&={C_{beta I}}^{K}e_{K}^{alpha }e_{gamma }^{I}delta _{delta }^{beta }-{C_{beta J}}^{K}delta _{gamma }^{beta }e_{K}^{alpha }e_{delta }^{J}\\&={C_{delta I}}^{K}e_{gamma }^{I}e_{K}^{alpha }-{C_{gamma J}}^{K}e_{delta }^{J}e_{K}^{alpha }end{aligned}}}orS\u03b3\u03b4\u03b1=S(\u03b3\u03b4)\u03b1.{displaystyle {S_{gamma delta }}^{alpha }={S_{(gamma delta )}}^{alpha }.}Since we have S\u03b1\u03b2\u03b3=S\u03b1[\u03b2\u03b3]{displaystyle S_{alpha beta gamma }=S_{alpha [beta gamma ]}} and S\u03b1\u03b2\u03b3=S(\u03b1\u03b2)\u03b3{displaystyle S_{alpha beta gamma }=S_{(alpha beta )gamma }}, we can successively interchange the first two and then last two indices with appropriate sign change each time to obtain,S\u03b1\u03b2\u03b3=S\u03b2\u03b1\u03b3=\u2212S\u03b2\u03b3\u03b1=\u2212S\u03b3\u03b2\u03b1=S\u03b3\u03b1\u03b2=S\u03b1\u03b3\u03b2=\u2212S\u03b1\u03b2\u03b3{displaystyle S_{alpha beta gamma }=S_{beta alpha gamma }=-S_{beta gamma alpha }=-S_{gamma beta alpha }=S_{gamma alpha beta }=S_{alpha gamma beta }=-S_{alpha beta gamma }}ImplyingS\u03b1\u03b2\u03b3=0,{displaystyle S_{alpha beta gamma }=0,}orC\u03b1IJe\u03b2Ie\u03b3J=0,{displaystyle C_{alpha IJ}e_{beta }^{I}e_{gamma }^{J}=0,}and since the e\u03b1I{displaystyle e_{alpha }^{I}} are invertible, we get C\u03b1IJ=0{displaystyle C_{alpha IJ}=0}. This is the desired result.See also[edit]References[edit]^ A. Palatini (1919) Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo 43, 203-212 [English translation by R.Hojman and C. Mukku in P.G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980)]^ A. Ashtekar “Lectures on non-perturbative canonical gravity” (with invited contributions), Bibliopolis, Naples 19988.^ Holst, S\u00f6ren (1996-05-15). “Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action”. Physical Review D. 53 (10): 5966\u20135969. arXiv:gr-qc\/9511026. Bibcode:1996PhRvD..53.5966H. doi:10.1103\/physrevd.53.5966. ISSN\u00a00556-2821. PMID\u00a010019884. S2CID\u00a015959938.^ Barbero G., J. Fernando (1995-05-15). “Real Ashtekar variables for Lorentzian signature space-times”. Physical Review D. 51 (10): 5507\u20135510. arXiv:gr-qc\/9410014. Bibcode:1995PhRvD..51.5507B. doi:10.1103\/physrevd.51.5507. ISSN\u00a00556-2821. PMID\u00a010018309. S2CID\u00a016314220.^ Immirzi, Giorgio (1997-10-01). “Real and complex connections for canonical gravity”. Classical and Quantum Gravity. IOP Publishing. 14 (10): L177\u2013L181. arXiv:gr-qc\/9612030. doi:10.1088\/0264-9381\/14\/10\/002. ISSN\u00a00264-9381. S2CID\u00a05795181.^ Romano, Joseph D. (1993). “Geometrodynamics vs. connection dynamics”. General Relativity and Gravitation. 25 (8): 759\u2013854. arXiv:gr-qc\/9303032. Bibcode:1993GReGr..25..759R. doi:10.1007\/bf00758384. ISSN\u00a00001-7701. S2CID\u00a0119359223."},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/tetradic-palatini-action-wikipedia\/#breadcrumbitem","name":"Tetradic Palatini action – Wikipedia"}}]}]