[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/trifunctional-purine-biosynthetic-protein-adenosine-3\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/trifunctional-purine-biosynthetic-protein-adenosine-3\/","headline":"Trifunctional purine biosynthetic protein adenosine-3","name":"Trifunctional purine biosynthetic protein adenosine-3","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Mammalian protein found in Homo sapiens GART Available structures PDB Ortholog search: PDBe","datePublished":"2021-06-10","dateModified":"2021-06-10","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/4\/47\/1rby.jpg\/250px-1rby.jpg","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/4\/47\/1rby.jpg\/250px-1rby.jpg","height":"199","width":"250"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/trifunctional-purine-biosynthetic-protein-adenosine-3\/","about":["Wiki"],"wordCount":8801,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Mammalian protein found in Homo sapiensGARTAvailable structuresPDBOrtholog search: PDBe RCSB List of PDB id codes1MEJ, 1MEN, 1MEO, 1NJS, 1RBM, 1RBQ, 1RBY, 1RBZ, 1RC0, 1RC1, 1ZLX, 1ZLY, 2QK4, 2V9Y, 4EW1, 4EW2, 4EW3, 4ZZ2, 4ZZ3, 4ZZ1, 4ZYV, 4ZZ0, 4ZYY, 4ZYX, 4ZYZ, 4ZYT, 4ZYU, 4ZYW (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4IdentifiersAliasesGART, AIRS, GARS, GARTF, PAIS, PGFT, PRGS, phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetaseExternal IDsOMIM: 138440 MGI: 95654 HomoloGene: 637 GeneCards: GART WikidataTrifunctional purine biosynthetic protein adenosine-3 is an enzyme that in humans is encoded by the GART gene.[5]This protein is a trifunctional polypeptide. It has Phosphoribosylamine\u2014glycine ligase (EC 6.3.4.13), Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2), AIR synthetase (FGAM cyclase) (EC 6.3.3.1) activity which is required for de novo purine biosynthesis.References[edit]^ a b c ENSG00000159131 GRCh38: Ensembl release 89: ENSG00000262473, ENSG00000159131 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000022962 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Gnirke A, Barnes TS, Patterson D, Schild D, Featherstone T, Olson MV (July 1991). “Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes”. EMBO J. 10 (7): 1629\u201334. doi:10.1002\/j.1460-2075.1991.tb07685.x. PMC\u00a0452831. PMID\u00a02050105.Further reading[edit]ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}]]>Hattori M, Fujiyama A, Taylor TD, et\u00a0al. (2000). “The DNA sequence of human chromosome 21”. Nature. 405 (6784): 311\u20139. Bibcode:2000Natur.405..311H. doi:10.1038\/35012518. PMID\u00a010830953.Banerjee D, Nandagopal K (2007). “Potential interaction between the GARS-AIRS-GART Gene and CP2\/LBP-1c\/LSF transcription factor in Down syndrome-related Alzheimer disease”. Cell. Mol. Neurobiol. 27 (8): 1117\u201326. doi:10.1007\/s10571-007-9217-2. PMID\u00a017902044. S2CID\u00a05102914.Dahms TE, Sainz G, Giroux EL, et\u00a0al. (2005). “The apo and ternary complex structures of a chemotherapeutic target: human glycinamide ribonucleotide transformylase”. Biochemistry. 44 (29): 9841\u201350. doi:10.1021\/bi050307g. PMID\u00a016026156.Kimura K, Wakamatsu A, Suzuki Y, et\u00a0al. (2006). “Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes”. Genome Res. 16 (1): 55\u201365. doi:10.1101\/gr.4039406. PMC\u00a01356129. PMID\u00a016344560.Dagle JM, Lepp NT, Cooper ME, et\u00a0al. (2009). “Determination of genetic predisposition to patent ductus arteriosus in preterm infants”. Pediatrics. 123 (4): 1116\u201323. doi:10.1542\/peds.2008-0313. PMC\u00a02734952. PMID\u00a019336370.Franke B, Vermeulen SH, Steegers-Theunissen RP, et\u00a0al. (2009). “An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1)”. Birth Defects Research Part A: Clinical and Molecular Teratology. 85 (3): 216\u201326. doi:10.1002\/bdra.20556. PMID\u00a019161160.Barbe L, Lundberg E, Oksvold P, et\u00a0al. (2008). “Toward a confocal subcellular atlas of the human proteome”. Mol. Cell. Proteomics. 7 (3): 499\u2013508. doi:10.1074\/mcp.M700325-MCP200. PMID\u00a018029348.Zhang Y, Desharnais J, Marsilje TH, et\u00a0al. (2003). “Rational design, synthesis, evaluation, and crystal structure of a potent inhibitor of human GAR Tfase: 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid”. Biochemistry. 42 (20): 6043\u201356. doi:10.1021\/bi034219c. PMID\u00a012755606.Brodsky G, Barnes T, Bleskan J, et\u00a0al. (1997). “The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome”. Hum. Mol. Genet. 6 (12): 2043\u201350. doi:10.1093\/hmg\/6.12.2043. PMID\u00a09328467.Kan JL, Moran RG (1997). “Intronic polyadenylation in the human glycinamide ribonucleotide formyltransferase gene”. Nucleic Acids Res. 25 (15): 3118\u201323. doi:10.1093\/nar\/25.15.3118. PMC\u00a0146841. PMID\u00a09224613.Gomez HL, Santillana SL, Vallejos CS, et\u00a0al. (2006). “A phase II trial of pemetrexed in advanced breast cancer: clinical response and association with molecular target expression”. Clin. Cancer Res. 12 (3 Pt 1): 832\u20138. doi:10.1158\/1078-0432.CCR-05-0295. PMID\u00a016467096.Zhang Y, Desharnais J, Greasley SE, et\u00a0al. (2002). “Crystal structures of human GAR Tfase at low and high pH and with substrate beta-GAR”. Biochemistry. 41 (48): 14206\u201315. doi:10.1021\/bi020522m. PMID\u00a012450384.Gerhard DS, Wagner L, Feingold EA, et\u00a0al. (2004). “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)”. Genome Res. 14 (10B): 2121\u20137. doi:10.1101\/gr.2596504. PMC\u00a0528928. PMID\u00a015489334.Manieri W, Moore ME, Soellner MB, et\u00a0al. (2007). “Human glycinamide ribonucleotide transformylase: active site mutants as mechanistic probes”. Biochemistry. 46 (1): 156\u201363. doi:10.1021\/bi0619270. PMC\u00a02518408. PMID\u00a017198385.Strausberg RL, Feingold EA, Grouse LH, et\u00a0al. (2002). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899\u2013903. Bibcode:2002PNAS…9916899M. doi:10.1073\/pnas.242603899. PMC\u00a0139241. PMID\u00a012477932.Rush J, Moritz A, Lee KA, et\u00a0al. (2005). “Immunoaffinity profiling of tyrosine phosphorylation in cancer cells”. Nat. Biotechnol. 23 (1): 94\u2013101. doi:10.1038\/nbt1046. PMID\u00a015592455. S2CID\u00a07200157.Zalkin H, Dixon JE (1992). “De novo purine nucleotide biosynthesis”. Prog. Nucleic Acid Res. Mol. Biol. Progress in Nucleic Acid Research and Molecular Biology. 42: 259\u201387. doi:10.1016\/s0079-6603(08)60578-4. ISBN\u00a09780125400428. PMID\u00a01574589.Vieira AR, McHenry TG, Daack-Hirsch S, et\u00a0al. (2008). “Candidate gene\/loci studies in cleft lip\/palate and dental anomalies finds novel susceptibility genes for clefts”. Genet. Med. 10 (9): 668\u201374. doi:10.1097\/GIM.0b013e3181833793. PMC\u00a02734954. PMID\u00a018978678.Ewing RM, Chu P, Elisma F, et\u00a0al. (2007). “Large-scale mapping of human protein-protein interactions by mass spectrometry”. Mol. Syst. Biol. 3 (1): 89. doi:10.1038\/msb4100134. PMC\u00a01847948. PMID\u00a017353931.Banerjee D, Nandagopal K (2009). “Phylogenetic analysis and in silico characterization of the GARS-AIRS-GART gene which codes for a tri-functional enzyme protein involved in de novo purine biosynthesis”. Mol. Biotechnol. 42 (3): 306\u201319. doi:10.1007\/s12033-009-9160-1. PMID\u00a019301155. S2CID\u00a034759623.External links[edit]li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:\" \"counter(listitem)\"a0 \"}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:\" (\"counter(listitem)\"a0 \"}]]>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}]]>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}]]>PDB gallery (adsbygoogle = window.adsbygoogle || []).push({});after-content-x41rbm: Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid2qk4: Human glycinamide ribonucleotide synthetase1rbz: Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid1zlx: The apo structure of human glycinamide ribonucleotide transformylase1meo: human glycinamide ribonucleotide Transformylase at pH 4.21rc1: Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid1zly: The structure of human glycinamide ribonucleotide transformylase in complex with alpha,beta-N-(hydroxyacetyl)-D-ribofuranosylamine and 10-formyl-5,8,dideazafolate1men: complex structure of human GAR Tfase and substrate beta-GAR1mej: Human Glycinamide Ribonucleotide Transformylase domain at pH 8.51rbq: Human GAR Tfase complex structure with 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid1rc0: Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid2v9y: HUMAN AMINOIMIDAZOLE RIBONUCLEOTIDE SYNTHETASE1rby: Human GAR Tfase complex structure with 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid and substrate beta-GAR1njs: human GAR Tfase in complex with hydrolyzed form of 10-trifluoroacetyl-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/trifunctional-purine-biosynthetic-protein-adenosine-3\/#breadcrumbitem","name":"Trifunctional purine biosynthetic protein adenosine-3"}}]}]