[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/trim55-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki24\/trim55-wikipedia\/","headline":"TRIM55 – Wikipedia","name":"TRIM55 – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Protein-coding gene in the species Homo sapiens Tripartite motif-containing protein 55 is a","datePublished":"2019-06-10","dateModified":"2019-06-10","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki24\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","url":"https:\/\/en.wikipedia.org\/wiki\/Special:CentralAutoLogin\/start?type=1x1","height":"1","width":"1"},"url":"https:\/\/wiki.edu.vn\/en\/wiki24\/trim55-wikipedia\/","about":["Wiki"],"wordCount":2904,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Protein-coding gene in the species Homo sapiensTripartite motif-containing protein 55 is a protein that in humans is encoded by the TRIM55 gene.[5][6] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4The protein encoded by this gene contains a RING zinc finger, a motif known to be involved in protein-protein interactions. This protein associates transiently with microtubules, myosin, and titin during muscle sarcomere assembly. It may act as a transient adaptor and plays a regulatory role in the assembly of sarcomeres. Four alternatively spliced transcript variants encoding distinct isoforms have been described.[6]References[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000147573 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000060913 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S (Mar 2001). “Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain”. J Mol Biol. 306 (4): 717\u201326. doi:10.1006\/jmbi.2001.4448. PMID\u00a011243782.^ a b “Entrez Gene: TRIM55 tripartite motif-containing 55”.Further reading[edit]McElhinny AS, Kakinuma K, Sorimachi H, et\u00a0al. (2002). “Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1”. J. Cell Biol. 157 (1): 125\u201336. doi:10.1083\/jcb.200108089. PMC\u00a02173255. PMID\u00a011927605.Pizon V, Iakovenko A, Van Der Ven PF, et\u00a0al. (2003). “Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein”. J. Cell Sci. 115 (Pt 23): 4469\u201382. doi:10.1242\/jcs.00131. PMID\u00a012414993.Strausberg RL, Feingold EA, Grouse LH, et\u00a0al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899\u2013903. Bibcode:2002PNAS…9916899M. doi:10.1073\/pnas.242603899. PMC\u00a0139241. PMID\u00a012477932.Ota T, Suzuki Y, Nishikawa T, et\u00a0al. (2004). “Complete sequencing and characterization of 21,243 full-length human cDNAs”. Nat. Genet. 36 (1): 40\u20135. doi:10.1038\/ng1285. PMID\u00a014702039.Gerhard DS, Wagner L, Feingold EA, et\u00a0al. (2004). “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)”. Genome Res. 14 (10B): 2121\u20137. doi:10.1101\/gr.2596504. PMC\u00a0528928. PMID\u00a015489334.Kim J, Bhinge AA, Morgan XC, Iyer VR (2005). “Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment”. Nat. Methods. 2 (1): 47\u201353. doi:10.1038\/nmeth726. PMID\u00a015782160. S2CID\u00a06135437.Lange S, Xiang F, Yakovenko A, et\u00a0al. (2005). “The kinase domain of titin controls muscle gene expression and protein turnover”. Science. 308 (5728): 1599\u2013603. CiteSeerX\u00a010.1.1.383.9888. doi:10.1126\/science.1110463. PMID\u00a015802564. S2CID\u00a02809403.Witt SH, Granzier H, Witt CC, Labeit S (2005). “MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination”. J. Mol. Biol. 350 (4): 713\u201322. doi:10.1016\/j.jmb.2005.05.021. PMID\u00a015967462. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki24\/trim55-wikipedia\/#breadcrumbitem","name":"TRIM55 – Wikipedia"}}]}]