[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/diamidophosphate-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki40\/diamidophosphate-wikipedia\/","headline":"Diamidophosphate – Wikipedia","name":"Diamidophosphate – Wikipedia","description":"From Wikipedia, the free encyclopedia Chemical compound Diamidophosphate (DAP) is the simplest phosphorodiamidate ion, with formula PO2(NH2)2\u2212. It is a","datePublished":"2021-04-27","dateModified":"2021-04-27","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki40\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/9\/9f\/PhOPO%28NH2%292.svg\/220px-PhOPO%28NH2%292.svg.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/9\/9f\/PhOPO%28NH2%292.svg\/220px-PhOPO%28NH2%292.svg.png","height":"108","width":"220"},"url":"https:\/\/wiki.edu.vn\/en\/wiki40\/diamidophosphate-wikipedia\/","wordCount":3421,"articleBody":"From Wikipedia, the free encyclopediaChemical compoundDiamidophosphate (DAP) is the simplest phosphorodiamidate ion, with formula PO2(NH2)2\u2212. It is a phosphorylating ion and was first used for phosphorylation of sugars in aqueous medium.[1] DAP has attracted interest in the area of primordial chemistry.[2]Several salts of the formula MPO2(NH2)2(H2O)x are known.[3]The sodium salt can be made by base hydrolysis of phenyl phosphorodiamidate.[4] It crystallises as a hexahydrate. It can be dehydrated.The silver salt AgPO2(NH2)2 can react using double decomposition with bromides forming other salts.The potassium diamidophosphate salt KPO2(NH2)2 is also known.Phosphorodiamidic acid crystallizes as a trihydrate.[4]Table of ContentsReactions[edit]Organic esters and amides[edit]Reactions with nucleosides[edit]See also[edit]References[edit]Other reading[edit]Reactions[edit]Heating anhydrous sodium diamidophosphate causes polmerization:[3]At 160\u00a0\u00b0C, Na2P2O4(NH)(NH2)2, Na3P3O6(NH)2(NH2)2, Na4P4O8(NH)3(NH2)2, Na5P5O10(NH)4(NH2)2 and Na6P6O12(NH)5(NH2)2 are produced. These substances contain P-N-P backbones. These can be separated by paper chromatography.At 200\u00a0\u00b0C the hexa-phosphate is produced.At 250\u00a0\u00b0C the typical chain length is 18.Heating hydrated salts induces loss of ammonia to form oligophosphates and polyphosphates.[3]Diamidophosphate inhibits urease enzymes by blocking up the active site, binding to two nickel centers. Diamidophosphate mimics the urea hydrolysis intermediate.[5]Diamidophosphate is tribasic, and the amine groups may also lose hydrogen to form more metallic salts. With silver, further reactions can yield explosive salts: tetrasilver orthodiamidophosphate (AgO)3P(NH2)NHAg, and pentasilver orthodiamidophosphate (AgO)3P(NHAg)2.[6]Organic esters and amides[edit] Numerous organic derivatives are known. One example is phenyl phosphorodiamidate.[8]Reactions with nucleosides[edit]DAP phosphorylates deoxynucleosides (the building blocks of DNA, and at the same time initiates polymerization to make DNA.[9] DAP facilitates the synthesis of larger RNA sequences (ribozymes) from smaller RNA strands.[10] Other nitrogenous derivatives of phosphorus derivatives have also been proposed in this context in a review article.[11]See also[edit]References[edit]^ Krishnamurthy, Ramanarayanan; Guntha, Sreenivasulu; Eschenmoser, Albert (4 July 2000). “Regioselective \u03b1-Phosphorylation of Aldoses in Aqueous Solution”. Angewandte Chemie International Edition. 39 (13): 2281\u20132285. doi:10.1002\/1521-3773(20000703)39:133.0.CO;2-2. ISSN\u00a01521-3773. PMID\u00a010941064.^ Gibard, Cl\u00e9mentine; Bhowmik, Subhendu; Karki, Megha; Kim, Eun-Kyong; Krishnamurthy, Ramanarayanan (2018). “Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions”. Nature Chemistry. 10 (2): 212\u2013217. doi:10.1038\/nchem.2878. PMC\u00a06295206. PMID\u00a029359747.^ a b c Klement, R.; Biberacher, G. (May 1956). “Das thermische Verhalten von Natriumdiamidophosphat, Darstellung von kondensierten Imidophosphaten”. Zeitschrift f\u00fcr Anorganische und Allgemeine Chemie. 285 (1\u20132): 74\u201385. doi:10.1002\/zaac.19562850109.^ a b Coggins, Adam J.; Powner, Matthew W. (10 October 2016). “Prebiotic synthesis of phosphoenol pyruvate by \u03b1-phosphorylation-controlled triose glycolysis Supplementary Information Compound 8” (PDF). Nature Chemistry. 9 (4): 310\u2013317. Bibcode:2017NatCh…9..310C. doi:10.1038\/nchem.2624. ISSN\u00a01755-4349. PMID\u00a028338685. S2CID\u00a0205296677.^ Deborah Zamble; Rowi\u0144ska-\u017byrek, Magdalena; Kozlowski, Henryk (2017). The Biological Chemistry of Nickel. Royal Society of Chemistry. pp.\u00a073\u201374, 83. ISBN\u00a09781788010580.^ Bretherick, L. (2016). Bretherick’s Handbook of Reactive Chemical Hazards. Elsevier. p.\u00a019. ISBN\u00a09781483162508.^ Pan, Baobao; Lam, Shu Kee; Mosier, Arvin; Luo, Yiqi; Chen, Deli (2016). “Ammonia Volatilization from Synthetic Fertilizers and its Mitigation Strategies: A Global Synthesis”. Agriculture, Ecosystems & Environment. 232: 283\u2013289. doi:10.1016\/j.agee.2016.08.019.^ Kiss, S.; Simihaian, M. (2013). Improving Efficiency of Urea Fertilizers by Inhibition of Soil Urease Activity. Springer Science & Business Media. pp.\u00a0105\u2013108. ISBN\u00a09789401718431.^ Krishnamurthy, Ramanarayanan; Jim\u00e9nez, Eddy I.; Gibard, Cl\u00e9mentine (2020). “Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA”. Angewandte Chemie International Edition. 60 (19): 10775\u201310783. doi:10.1002\/anie.202015910. ISSN\u00a01521-3773. PMID\u00a033325148. S2CID\u00a0229281953.^ Song, Emilie Yeonwha; Jim\u00e9nez, Eddy Ivanhoe; Lin, Huacan; Vay, Kristian Le; Krishnamurthy, Ramanarayanan; Mutschler, Hannes (2020). “Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation”. Angewandte Chemie International Edition. 60 (6): 2952\u20132957. doi:10.1002\/anie.202010918. ISSN\u00a01521-3773. PMC\u00a07898671. PMID\u00a033128282.^ Karki, Megha; Gibard, Cl\u00e9mentine; Bhowmik, Subhendu; Krishnamurthy, Ramanarayanan (2017-07-29). “Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water”. Life. 7 (3): 32. Bibcode:2017Life….7…32K. doi:10.3390\/life7030032. PMC\u00a05617957. PMID\u00a028758921.Other reading[edit]H. N. Stokes (1894). “On Diamidoorthophosphoric and Diamidotrihydroxyphosphoric Acids”. American Chemical Journal. 16 (2): 123."},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/diamidophosphate-wikipedia\/#breadcrumbitem","name":"Diamidophosphate – Wikipedia"}}]}]