[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/galaxy-filament-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki40\/galaxy-filament-wikipedia\/","headline":"Galaxy filament – Wikipedia","name":"Galaxy filament – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Largest structures in the universe, made of galaxies after-content-x4 Artist’s rendering of two","datePublished":"2019-02-25","dateModified":"2019-02-25","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki40\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/e\/e4\/Galaxy_fimament.jpg\/250px-Galaxy_fimament.jpg","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/e\/e4\/Galaxy_fimament.jpg\/250px-Galaxy_fimament.jpg","height":"250","width":"250"},"url":"https:\/\/wiki.edu.vn\/en\/wiki40\/galaxy-filament-wikipedia\/","about":["Wiki"],"wordCount":7297,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Largest structures in the universe, made of galaxies (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Artist’s rendering of two string-like filaments of galaxies.In cosmology, galaxy filaments (subtypes: supercluster complexes, galaxy walls, and galaxy sheets)[1][2] are the largest known structures in the universe, consisting of walls of gravitationally bound galaxy superclusters. These massive, thread-like formations can reach 80 megaparsecs h\u22121 (or of the order of 160 to 260 million light-years[3][4]) and form the boundaries between large voids.[5]Table of ContentsFormation[edit]Discovery[edit]Filaments[edit]Galaxy walls[edit]Map of nearest galaxy walls[edit]Large Quasar Groups[edit]Supercluster complex[edit]Maps of large-scale distribution[edit]See also[edit]References[edit]Further reading[edit]External links[edit]Formation[edit]In the standard model of the evolution of the universe, galactic filaments form along and follow web-like strings of dark matter\u2014also referred to as the galactic web or cosmic web.[6] It is thought that this dark matter dictates the structure of the Universe on the grandest of scales. Dark matter gravitationally attracts baryonic matter, and it is this “normal” matter that astronomers see forming long, thin walls of super-galactic clusters. (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Discovery[edit]Discovery of structures larger than superclusters began in the late-1980s. In 1987, astronomer R. Brent Tully of the University of Hawaii’s Institute of Astronomy identified what he called the Pisces\u2013Cetus Supercluster Complex. In 1989, the CfA2 Great Wall was discovered,[7] followed by the Sloan Great Wall in 2003.[8] On January 11, 2013, researchers led by Roger Clowes of the University of Central Lancashire announced the discovery of a large quasar group, the Huge-LQG, which dwarfs previously discovered galaxy filaments in size.[9] In November 2013, using gamma-ray bursts as reference points, astronomers discovered the Hercules\u2013Corona Borealis Great Wall, an extremely huge filament measuring more than 10 billion light-years across.[10][11][12]Filaments[edit]The filament subtype of filaments have roughly similar major and minor axes in cross-section, along the lengthwise axis.A short filament was proposed by Adi Zitrin and Noah Brosch\u2014detected by identifying an alignment of star-forming galaxies\u2014in the neighborhood of the Milky Way and the Local Group.[21] The proposal of this filament, and of a similar but shorter filament, were the result of a study by McQuinn et al. (2014) based on distance measurements using the TRGB method.[22]Galaxy walls[edit]The galaxy wall subtype of filaments have a significantly greater major axis than minor axis in cross-section, along the lengthwise axis.Walls of GalaxiesWallDateMean distanceDimensionNotesCfA2 Great Wall (Coma Wall, Great Wall, Northern Great Wall, Great Northern Wall, CfA Great Wall)1989z=0.03058251 Mpc long: 750 Mly long 250 Mly wide 20 Mly thickThis was the first super-large large-scale structure or pseudo-structure in the universe to be discovered. The CfA Homunculus lies at the heart of the Great Wall, and the Coma Supercluster forms most of the homunculus structure. The Coma Cluster lies at the core.[23][24]Sloan Great Wall (SDSS Great Wall)2003z=0.07804433 Mpc longThis was the largest known galaxy filament to be discovered,[23] until it was eclipsed by the Hercules\u2013Corona Borealis Great Wall found ten years later.Sculptor Wall (Southern Great Wall, Great Southern Wall, Southern Wall)8000\u00a0km\/s long 5000\u00a0km\/s wide 1000\u00a0km\/s deep (in redshift space dimensions) The Sculptor Wall is “parallel” to the Fornax Wall and “perpendicular” to the Grus Wall.[25][26]Grus WallThe Grus Wall is “perpendicular” to the Fornax and Sculptor Walls.[26]Fornax WallThe Fornax Cluster is part of this wall. The wall is “parallel” to the Sculptor Wall and “perpendicular” to the Grus Wall.[25][26]Hercules\u2013Corona Borealis Great Wall2013z\u22482[11]3 Gpc long,[11]150 000\u00a0km\/s deep[11] (in redshift space) The largest known structure in the universe.[10][11][12] This is also the first time since 1991 that a galaxy filament\/great wall held the record as the largest known structure in the universe. Galaxy filaments, walls and voids form web-like structures.Map of nearest galaxy walls[edit] The Universe within 500 million light years, showing the nearest galaxy wallsLarge Quasar Groups[edit]Large quasar groups (LQGs) are some of the largest structures known.[32] They are theorized to be protohyperclusters\/proto-supercluster-complexes\/galaxy filament precursors.[33]Large Quasar GroupsLQGDateMean distanceDimensionNotesClowes\u2013Campusano LQG (U1.28, CCLQG)1991z=1.28longest dimension: 630\u00a0MpcIt was the largest known structure in the universe from 1991 to 2011, until U1.11’s discovery.U1.112011z=1.11longest dimension: 780\u00a0MpcWas the largest known structure in the universe for a few months, until Huge-LQG’s discovery.Huge-LQG2012z=1.27characteristic size: 500\u00a0Mpc longest dimension: 1.24\u00a0Gpc It was the largest structure known in the universe,[32][33] until the discovery of the Hercules\u2013Corona Borealis Great Wall found one year later.[11]Supercluster complex[edit]Maps of large-scale distribution[edit]The universe within 1 billion light-years (307 Mpc) of Earth, showing local superclusters forming filaments and voidsMap of nearest walls, voids and superclusters2dF survey map, containing the SDSS Great Wall2MASS XSC infrared sky mapSee also[edit]References[edit]^ Boris V. Komberg, Andrey V. Kravtsov, Vladimir N. Lukash; “The search and investigation of the Large Groups of Quasars” arXiv:astro-ph\/9602090; Bibcode:1996astro.ph..2090K;^ R.G. Clowes; “Large Quasar Groups – A Short Review”; The New Era of Wide Field Astronomy, ASP Conference Series, vol. 232.; 2001; Astronomical Society of the Pacific; ISBN\u00a01-58381-065-X\u00a0; Bibcode:2001ASPC..232..108C^ “Convert 50 Parsecs to Light Years”.^ “Convert Megaparsec to Mile”.^ Bharadwaj, Somnath; Bhavsar, Suketu; Sheth, Jatush V (2004). “The Size of the Longest Filaments in the Universe”. Astrophys J. 606 (1): 25\u201331. arXiv:astro-ph\/0311342. Bibcode:2004ApJ…606…25B. doi:10.1086\/382140. S2CID\u00a010473973.^ Riordan, Michael; David N. Schramm (March 1991). Shadows of Creation: Dark Matter and the Structure of the Universe. W H Freeman & Co (Sd). ISBN\u00a00-7167-2157-0.^ Huchra, John P.; Geller, Margaret J. (17 November 1989). “M. J. Geller & J. P. Huchra, Science 246, 897 (1989)”. Science. 246 (4932): 897\u2013903. doi:10.1126\/science.246.4932.897. PMID\u00a017812575. S2CID\u00a031328798. Archived from the original on 2008-06-21. Retrieved 2009-09-18.^ Sky and Telescope, “Refining the Cosmic Recipe” Archived 2012-03-09 at the Wayback Machine, 14 November 2003^ Wall, Mike (2013-01-11). “Largest structure in universe discovered”. Fox News. Archived from the original on 2013-01-12. Retrieved 2013-01-12.^ a b Horvath, Istvan; Hakkila, Jon; Bagoly, Zsolt (2014). “Possible structure in the GRB sky distribution at redshift two”. Astronomy & Astrophysics. 561: id.L12. arXiv:1401.0533. Bibcode:2014A&A…561L..12H. doi:10.1051\/0004-6361\/201323020. S2CID\u00a024224684.^ a b c d e f Horvath I., Hakkila J., and Bagoly Z.; Hakkila, J.; Bagoly, Z. (2013). “The largest structure of the Universe, defined by Gamma-Ray Bursts”. 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: Paper 33 in EConf Proceedings C1304143. 1311: 1104. arXiv:1311.1104. Bibcode:2013arXiv1311.1104H.{{cite journal}}: CS1 maint: multiple names: authors list (link)^ a b Klotz, Irene (2013-11-19). “Universe’s Largest Structure is a Cosmic Conundrum”. discovery. Archived from the original on 2013-11-30. Retrieved 2013-11-22.^ ‘Astronomy and Astrophysics’ (ISSN\u00a00004-6361), vol. 138, no. 1, Sept. 1984, pp. 85\u201392. Research supported by Cornell University “The Coma\/A 1367 filament of galaxies” 09\/1984 Bibcode:1984A&A…138…85F^ THE ASTRONOMICAL JOURNAL, 115:1745-1777, 1998 May\u00a0; THE STAR FORMATION PROPERTIES OF DISK GALAXIES: H\u03b1 IMAGING OF GALAXIES IN THE COMA SUPERCLUSTER^ ‘Astrophysical Journal’, Part 1 (ISSN\u00a00004-637X), vol. 299, Dec. 1, 1985, pp. 5\u201314. “A possible 300 megaparsec filament of clusters of galaxies in Perseus-Pegasus” 12\/1985 Bibcode:1985ApJ…299….5B^ a b The Astrophysical Journal Supplement Series, volume 121, issue 2, pp. 445\u2013472. “Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region” 04\/1999 Bibcode:1999ApJS..121..445T^ NASA, GIANT GALAXY STRING DEFIES MODELS OF HOW UNIVERSE EVOLVED Archived 2008-08-06 at the Wayback Machine, January 7, 2004^ Palunas, Povilas; Teplitz, Harry I.; Francis, Paul J.; Williger, Gerard M.; Woodgate, Bruce E. (2004). “The Distribution of Ly\u03b1\u2010Emitting Galaxies at z = 2.38”. The Astrophysical Journal. 602 (2): 545\u2013554. arXiv:astro-ph\/0311279. Bibcode:2004ApJ…602..545P. doi:10.1086\/381145. S2CID\u00a0990891.^ Francis, Paul J.; Palunas, Povilas; Teplitz, Harry I.; Williger, Gerard M.; Woodgate, Bruce E. (2004). “The Distribution of Ly\u03b1\u2010emitting Galaxies at z =2.38. II. Spectroscopy”. The Astrophysical Journal. 614 (1): 75\u201383. arXiv:astro-ph\/0406413. Bibcode:2004ApJ…614…75F. doi:10.1086\/423417. S2CID\u00a0118037575.^ Relativistic Astrophysics Legacy and Cosmology – Einstein’s, ESO Astrophysics Symposia, Volume . ISBN\u00a0978-3-540-74712-3. Springer-Verlag Berlin Heidelberg, 2008, p. 358 “Ultraviolet-Bright, High-Redshift ULIRGS” 00\/2008 Bibcode:2008ralc.conf..358W^ Zitrin, A.; Brosch, N. (2008). “The NGC 672 and 784 galaxy groups: evidence for galaxy formation and growth along a nearby dark matter filament”. Monthly Notices of the Royal Astronomical Society. 390 (1): 408\u2013420. arXiv:0808.1789. Bibcode:2008MNRAS.390..408Z. doi:10.1111\/j.1365-2966.2008.13786.x. S2CID\u00a016296617.^ McQuinn, K.B.W.; et\u00a0al. (2014). “Distance Determinations to SHIELD Galaxies from Hubble Space Telescope Imaging”. The Astrophysical Journal. 785 (1): 3. arXiv:1402.3723. Bibcode:2014ApJ…785….3M. doi:10.1088\/0004-637x\/785\/1\/3. S2CID\u00a0118465292.^ a b Chin. J. Astron. Astrophys. Vol. 6 (2006), No. 1, 35\u201342 “Super-Large-Scale Structures in the Sloan Digital Sky Survey” (PDF).^ Scientific American, vol. 280, no. 6, pp. 30\u201337 “Mapping the Universe” (PDF). Archived from the original (PDF) on 2008-07-04.\u00a0(1.43\u00a0MB) 06\/1999 Bibcode:1999SciAm.280f..30L^ a b c Unveiling large-scale structures behind the Milky Way. Astronomical Society of the Pacific Conference Series, vol. 67; Proceedings of a workshop at the Observatoire de Paris-Meudon; 18\u201321 January 1994; San Francisco: Astronomical Society of the Pacific (ASP); c1994; edited by Chantal Balkowski and R. C. Kraan-Korteweg, p.21\u00a0; Visualization of Nearby Large-Scale Structures Archived 2015-11-27 at the Wayback Machine\u00a0; Fairall, A. P., Paverd, W. R., & Ashley, R. P.\u00a0; 1994ASPC…67…21F^ a b c d Astrophysics and Space Science, volume 230, issue 1\u20132, pp. 225\u2013235 “Large-Scale Structures in the Distribution of Galaxies” 08\/1995 Bibcode:1995Ap&SS.230..225F^ World Science, Wall of galaxies tugs on ours, astronomers find Archived 2007-10-28 at the Wayback Machine April 19, 2006^ Tully, R. Brent; Courtois, H\u00e9l\u00e8ne; Hoffman, Yehuda; Pomar\u00e8de, Daniel (2 September 2014). “The Laniakea supercluster of galaxies”. Nature (published 4 September 2014). 513 (7516): 71\u201373. arXiv:1409.0880. Bibcode:2014Natur.513…71T. doi:10.1038\/nature13674. PMID\u00a025186900. S2CID\u00a0205240232.^ The Astronomical Journal, volume 120, issue 5, pp. 2331\u20132337. “B3 0003+387: AGN-Marked Large-Scale Structure at Redshift 1.47?” 11\/2000 Bibcode:2000AJ….120.2331T doi:10.1086\/316827^ FermiLab, “Astronomers Find Wall of Galaxies Traversing the Hubble Deep Field”, DARPA, Monday, January 24, 2000^ Vanden Berk, Daniel E.; Stoughton, Chris; Crotts, Arlin P. S.; Tytler, David; Kirkman, David (2000). “QSO[CLC]s[\/CLC] and Absorption-Line Systems surrounding the Hubble Deep Field”. The Astronomical Journal. 119 (6): 2571\u20132582. arXiv:astro-ph\/0003203. Bibcode:2000AJ….119.2571V. doi:10.1086\/301404. S2CID\u00a0117882449.^ a b ScienceDaily, “Biggest Structure in Universe: Large Quasar Group Is 4 Billion Light Years Across” Archived 2018-08-09 at the Wayback Machine, Royal Astronomical Society, 11 January 2013 (accessed 13 January 2013)^ a b Clowes, Roger G.; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Soechting, Ilona K.; Graham, Matthew J.; “A structure in the early universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology”; arXiv:1211.6256\u00a0; Bibcode:2012arXiv1211.6256C\u00a0; doi:10.1093\/mnras\/sts497\u00a0; Monthly Notices of the Royal Astronomical Society, 11 January 2013Further reading[edit]External links[edit] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki40\/galaxy-filament-wikipedia\/#breadcrumbitem","name":"Galaxy filament – Wikipedia"}}]}]