Natural logarithm of 2 – Wikipedia

From Wikipedia, the free encyclopedia

The decimal value of the natural logarithm of 2 (sequence A002162 in the OEIS)
is approximately

The logarithm of 2 in other bases is obtained with the formula

The common logarithm in particular is (OEIS: A007524)

The inverse of this number is the binary logarithm of 10:

By the Lindemann–Weierstrass theorem, the natural logarithm of any natural number other than 0 and 1 (more generally, of any positive algebraic number other than 1) is a transcendental number.

Series representations[edit]

Rising alternate factorial[edit]

Binary rising constant factorial[edit]

Other series representations[edit]

Involving the Riemann Zeta function[edit]

(γ is the Euler–Mascheroni constant and ζ Riemann’s zeta function.)

BBP-type representations[edit]

(See more about Bailey–Borwein–Plouffe (BBP)-type representations.)

Applying the three general series for natural logarithm to 2 directly gives:

Applying them to

2=3243{displaystyle textstyle 2={frac {3}{2}}cdot {frac {4}{3}}}

gives:

Applying them to

2=(2)2{displaystyle textstyle 2=({sqrt {2}})^{2}}

gives:

Applying them to

2=(1615)7(8180)3(2524)5{displaystyle textstyle 2={left({frac {16}{15}}right)}^{7}cdot {left({frac {81}{80}}right)}^{3}cdot {left({frac {25}{24}}right)}^{5}}

gives:

Representation as integrals[edit]

The natural logarithm of 2 occurs frequently as the result of integration. Some explicit formulas for it include:

Other representations[edit]

The Pierce expansion is OEIS: A091846

The Engel expansion is OEIS: A059180

The cotangent expansion is OEIS: A081785

The simple continued fraction expansion is OEIS: A016730

which yields rational approximations, the first few of which are 0, 1, 2/3, 7/10, 9/13 and 61/88.

This generalized continued fraction:

also expressible as

Bootstrapping other logarithms[edit]

Given a value of ln 2, a scheme of computing the logarithms of other integers is to tabulate the logarithms of the prime numbers and in the next layer the logarithms of the composite numbers c based on their factorizations

This employs

In a third layer, the logarithms of rational numbers r = a/b are computed with ln(r) = ln(a) − ln(b), and logarithms of roots via ln nc = 1/n ln(c).

The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2i close to powers bj of other numbers b is comparatively easy, and series representations of ln(b) are found by coupling 2 to b with logarithmic conversions.

Example[edit]

If ps = qt + d with some small d, then ps/qt = 1 + d/qt and therefore

Selecting q = 2 represents ln p by ln 2 and a series of a parameter d/qt that one wishes to keep small for quick convergence. Taking 32 = 23 + 1, for example, generates

This is actually the third line in the following table of expansions of this type:

s p t q d/qt
1 3 1 2 1/2 = 0.50000000
1 3 2 2 1/4 = −0.25000000
2 3 3 2 1/8 = 0.12500000
5 3 8 2 13/256 = −0.05078125
12 3 19 2 7153/524288 = 0.01364326
1 5 2 2 1/4 = 0.25000000
3 5 7 2 3/128 = −0.02343750
1 7 2 2 3/4 = 0.75000000
1 7 3 2 1/8 = −0.12500000
5 7 14 2 423/16384 = 0.02581787
1 11 3 2 3/8 = 0.37500000
2 11 7 2 7/128 = −0.05468750
11 11 38 2 10433763667/274877906944 = 0.03795781
1 13 3 2 5/8 = 0.62500000
1 13 4 2 3/16 = −0.18750000
3 13 11 2 149/2048 = 0.07275391
7 13 26 2 4360347/67108864 = −0.06497423
10 13 37 2 419538377/137438953472 = 0.00305254
1 17 4 2 1/16 = 0.06250000
1 19 4 2 3/16 = 0.18750000
4 19 17 2 751/131072 = −0.00572968
1 23 4 2 7/16 = 0.43750000
1 23 5 2 9/32 = −0.28125000
2 23 9 2 17/512 = 0.03320312
1 29 4 2 13/16 = 0.81250000
1 29 5 2 3/32 = −0.09375000
7 29 34 2 70007125/17179869184 = 0.00407495
1 31 5 2 1/32 = −0.03125000
1 37 5 2 5/32 = 0.15625000
4 37 21 2 222991/2097152 = −0.10633039
5 37 26 2 2235093/67108864 = 0.03330548
1 41 5 2 9/32 = 0.28125000
2 41 11 2 367/2048 = −0.17919922
3 41 16 2 3385/65536 = 0.05165100
1 43 5 2 11/32 = 0.34375000
2 43 11 2 199/2048 = −0.09716797
5 43 27 2 12790715/134217728 = 0.09529825
7 43 38 2 3059295837/274877906944 = −0.01112965

Starting from the natural logarithm of q = 10 one might use these parameters:

s p t q d/qt
10 2 3 10 3/125 = 0.02400000
21 3 10 10 460353203/10000000000 = 0.04603532
3 5 2 10 1/4 = 0.25000000
10 5 7 10 3/128 = −0.02343750
6 7 5 10 17649/100000 = 0.17649000
13 7 11 10 3110989593/100000000000 = −0.03110990
1 11 1 10 1/10 = 0.10000000
1 13 1 10 3/10 = 0.30000000
8 13 9 10 184269279/1000000000 = −0.18426928
9 13 10 10 604499373/10000000000 = 0.06044994
1 17 1 10 7/10 = 0.70000000
4 17 5 10 16479/100000 = −0.16479000
9 17 11 10 18587876497/100000000000 = 0.18587876
3 19 4 10 3141/10000 = −0.31410000
4 19 5 10 30321/100000 = 0.30321000
7 19 9 10 106128261/1000000000 = −0.10612826
2 23 3 10 471/1000 = −0.47100000
3 23 4 10 2167/10000 = 0.21670000
2 29 3 10 159/1000 = −0.15900000
2 31 3 10 39/1000 = −0.03900000

Known digits[edit]

This is a table of recent records in calculating digits of ln 2. As of December 2018, it has been calculated to more digits than any other natural logarithm[2][3] of a natural number, except that of 1.

Date Name Number of digits
January 7, 2009 A.Yee & R.Chan 15,500,000,000
February 4, 2009 A.Yee & R.Chan 31,026,000,000
February 21, 2011 Alexander Yee 50,000,000,050
May 14, 2011 Shigeru Kondo 100,000,000,000
February 28, 2014 Shigeru Kondo 200,000,000,050
July 12, 2015 Ron Watkins 250,000,000,000
January 30, 2016 Ron Watkins 350,000,000,000
April 18, 2016 Ron Watkins 500,000,000,000
December 10, 2018 Michael Kwok 600,000,000,000
April 26, 2019 Jacob Riffee 1,000,000,000,000
August 19, 2020 Seungmin Kim[4][5] 1,200,000,000,100
September 9, 2021 William Echols[6][7] 1,500,000,000,000

See also[edit]

References[edit]

External links[edit]