Lemniscate constant – Wikipedia

before-content-x4

Ratio of the perimeter of Bernoulli’s lemniscate to its diameter

after-content-x4

In mathematics, the lemniscate constant ϖ[1][3][4][5] is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli’s lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate

(x2+y2)2=x2y2{displaystyle (x^{2}+y^{2})^{2}=x^{2}-y^{2}}

is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755.[6][7][8][9] The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

Gauss’s constant, denoted by G, is equal to ϖ /π ≈ 0.8346268.[10]

John Todd named two more lemniscate constants, the first lemniscate constant A = ϖ/2 ≈ 1.3110287771 and the second lemniscate constant B = π/(2ϖ) ≈ 0.5990701173.[11][12][13][14]

Sometimes the quantities 2ϖ or A are referred to as the lemniscate constant.[15][16]

History[edit]

Gauss’s constant

G{displaystyle G}

is named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as

1/M(1,2){displaystyle 1/M(1,{sqrt {2}})}

.[6] By 1799, Gauss had two proofs of the theorem that

M(1,2)=π/ϖ{displaystyle M(1,{sqrt {2}})=pi /varpi }

where

ϖ{displaystyle varpi }

is the lemniscate constant.[a]

The lemniscate constant

ϖ{displaystyle varpi }

and first lemniscate constant

A{displaystyle A}

were proven transcendental by Theodor Schneider in 1937 and the second lemniscate constant

B{displaystyle B}

and Gauss’s constant

G{displaystyle G}

were proven transcendental by Theodor Schneider in 1941.[11][17][b] In 1975, Gregory Chudnovsky proved that the set

{π,ϖ}{displaystyle {pi ,varpi }}

is algebraically independent over

Q{displaystyle mathbb {Q} }

, which implies that

A{displaystyle A}

and

B{displaystyle B}

are algebraically independent as well.[18][19] But the set

{π,M(1,1/2),M(1,1/2)}{displaystyle {pi ,M(1,1/{sqrt {2}}),M'(1,1/{sqrt {2}})}}

(where the prime denotes the derivative with respect to the second variable) is not algebraically independent over

Q{displaystyle mathbb {Q} }

. In fact,[20]

Usually,

ϖ{displaystyle varpi }

is defined by the first equality below.[21][22]

where K is the complete elliptic integral of the first kind with modulus k, Β is the beta function, Γ is the gamma function and ζ is the Riemann zeta function.

The lemniscate constant can also be computed by the arithmetic–geometric mean

M{displaystyle M}

,

Moreover,

which is analogous to

where

β{displaystyle beta }

is the Dirichlet beta function and

ζ{displaystyle zeta }

is the Riemann zeta function.[23]

Gauss’s constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2, after his calculation of

M(1,2){displaystyle M(1,{sqrt {2}})}

published in 1800:

Gauss’s constant is equal to

where Β denotes the beta function. A formula for G in terms of Jacobi theta functions is given by

Gauss’s constant may be computed from the gamma function at argument 1/4:

John Todd’s lemniscate constants may be given in terms of the beta function B:

Viète’s formula for π can be written:

An analogous formula for ϖ is:[25]

The Wallis product for π is:

An analogous formula for ϖ is:[26]

A related result for Gauss’s constant (

G=ϖ/π{displaystyle G=varpi /pi }

) is:[27]

An infinite series of Gauss’s constant discovered by Gauss is:[28]

The Machin formula for π is

14π=4arctan15arctan1239,{textstyle {tfrac {1}{4}}pi =4arctan {tfrac {1}{5}}-arctan {tfrac {1}{239}},}

and several similar formulas for π can be developed using trigonometric angle sum identities, e.g. Euler’s formula

14π=arctan12+arctan13{textstyle {tfrac {1}{4}}pi =arctan {tfrac {1}{2}}+arctan {tfrac {1}{3}}}

. Analogous formulas can be developed for ϖ, including the following found by Gauss:

12ϖ=2arcsl12+arcsl723{displaystyle {tfrac {1}{2}}varpi =2operatorname {arcsl} {tfrac {1}{2}}+operatorname {arcsl} {tfrac {7}{23}}}

, where

arcsl{displaystyle operatorname {arcsl} }

is the lemniscate arcsine.[29]

The lemniscate constant can be rapidly computed by the series[30][31]

where

pn=(3n2n)/2{displaystyle p_{n}=(3n^{2}-n)/2}

(these are the generalized pentagonal numbers).

In a spirit similar to that of the Basel problem,

where

Z[i]{displaystyle mathbb {Z} [i]}

are the Gaussian integers and

G4{displaystyle G_{4}}

is the Eisenstein series of weight

4{displaystyle 4}

(see Lemniscate elliptic functions § Hurwitz numbers for a more general result).[32]

A related result is

where

σ3{displaystyle sigma _{3}}

is the sum of positive divisors function.[33]

In 1842, Malmsten found

where

γ{displaystyle gamma }

is Euler’s constant.

Gauss’s constant is given by the rapidly converging series

The constant is also given by the infinite product

Continued fractions[edit]

A (generalized) continued fraction for π is

An analogous formula for ϖ is[12]

Define Brouncker’s continued fraction by[34]

n0{displaystyle ngeq 0}

except for the first equality where

n1{displaystyle ngeq 1}

. Then[35][36]

For example,

Simple continued fractions[37][38][edit]

Integrals[edit]

A geometric representation of

ϖ is related to the area under the curve

x4+y4=1{displaystyle x^{4}+y^{4}=1}

. Defining

πn:=B(1n,1n){displaystyle pi _{n}mathrel {:=} mathrm {B} {bigl (}{tfrac {1}{n}},{tfrac {1}{n}}{bigr )}}

, twice the area in the positive quadrant under the curve

xn+yn=1{displaystyle x^{n}+y^{n}=1}

is

2011xnndx=1nπn.{textstyle 2int _{0}^{1}{sqrt[{n}]{1-x^{n}}}mathop {mathrm {d} x} ={tfrac {1}{n}}pi _{n}.}

In the quartic case,

14π4=12ϖ.{displaystyle {tfrac {1}{4}}pi _{4}={tfrac {1}{sqrt {2}}}varpi .}

In 1842, Malmsten discovered that[39]

Furthermore,

and[40]

a form of Gaussian integral.

Gauss’s constant appears in the evaluation of the integrals

The first and second lemniscate constants are defined by integrals:[11]

Circumference of an ellipse[edit]

Gauss’s constant satisfies the equation

Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)[42]

Now considering the circumference

C{displaystyle C}

of the ellipse with axes

2{displaystyle {sqrt {2}}}

and

1{displaystyle 1}

, satisfying

2x2+4y2=1{displaystyle 2x^{2}+4y^{2}=1}

, Stirling noted that

Hence the full circumference is

This is also the arc length of the sine curve on half a period:[44]

References[edit]

  1. ^ Gauss, C. F. (1866). Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen. p. 404
  2. ^ Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 199
  3. ^ Bottazzini, Umberto; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory. Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4. p. 57
  4. ^ Arakawa, Tsuneo; Ibukiyama, Tomoyoshi; Kaneko, Masanobu (2014). Bernoulli Numbers and Zeta Functions. Springer. ISBN 978-4-431-54918-5. p. 203
  5. ^ a b Finch, Steven R. (18 August 2003). Mathematical Constants. Cambridge University Press. p. 420. ISBN 978-0-521-81805-6.
  6. ^ Kobayashi, Hiroyuki; Takeuchi, Shingo (2019), “Applications of generalized trigonometric functions with two parameters”, Communications on Pure & Applied Analysis, 18 (3): 1509–1521, arXiv:1903.07407, doi:10.3934/cpaa.2019072, S2CID 102487670
  7. ^ Asai, Tetsuya (2007), Elliptic Gauss Sums and Hecke L-values at s=1, arXiv:0707.3711
  8. ^ “A062539 – Oeis”.
  9. ^ “A014549 – Oeis”.
  10. ^ a b c Todd, John (January 1975). “The lemniscate constants”. Communications of the ACM. 18 (1): 14–19. doi:10.1145/360569.360580. S2CID 85873.
  11. ^ a b “A085565 – Oeis”.
  12. ^ “A076390 – Oeis”.
  13. ^ Carlson, B. C. (2010), “Elliptic Integrals”, in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  14. ^ “A064853 – Oeis”.
  15. ^ “Lemniscate Constant”.
  16. ^ Schneider, Theodor (1941). “Zur Theorie der Abelschen Funktionen und Integrale”. Journal für die reine und angewandte Mathematik. 183 (19): 110–128. doi:10.1515/crll.1941.183.110. S2CID 118624331.
  17. ^ G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
  18. ^ G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
  19. ^ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 45
  20. ^ Finch, Steven R. (18 August 2003). Mathematical Constants. Cambridge University Press. pp. 420–422. ISBN 978-0-521-81805-6.
  21. ^ Schappacher, Norbert (1997). “Some milestones of lemniscatomy” (PDF). In Sertöz, S. (ed.). Algebraic Geometry (Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey). Marcel Dekker. pp. 257–290.
  22. ^ “A113847 – Oeis”.
  23. ^ Levin (2006)
  24. ^ Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.
  25. ^ Hyde, Trevor (2014). “A Wallis product on clovers” (PDF). The American Mathematical Monthly. 121 (3): 237–243. doi:10.4169/amer.math.monthly.121.03.237. S2CID 34819500.
  26. ^ Bottazzini, Umberto; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory. Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4. p. 60
  27. ^ Todd (1975)
  28. ^ Cox 1984, p. 307, eq. 2.21 for the first equality. The second equality can be proved by using the pentagonal number theorem.
  29. ^ Berndt, Bruce C. (1998). Ramanujan’s Notebooks Part V. Springer. ISBN 978-1-4612-7221-2. p. 326
  30. ^ Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 232
  31. ^ Garrett, Paul. “Level-one elliptic modular forms” (PDF). University of Minnesota. p. 11—13
  32. ^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1. p. 140 (eq. 3.34), p. 153. There’s an error on p. 153:
  33. ^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1. p. 146, 155
  34. ^ Perron, Oskar (1957). Die Lehre von den Kettenbrüchen: Band II (in German) (Third ed.). B. G. Teubner. p. 36, eq. 24
  35. ^ “A062540 – OEIS”. oeis.org. Retrieved 2022-09-14.
  36. ^ “A053002 – OEIS”. oeis.org.
  37. ^ Blagouchine, Iaroslav V. (2014). “Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results”. The Ramanujan Journal. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. S2CID 120943474.
  38. ^ “A068467 – Oeis”.
  39. ^ Levien (2008)
  40. ^ Adlaj, Semjon (2012). “An Eloquent Formula for the Perimeter of an Ellipse” (PDF). American Mathematical Society. p. 1097. One might also observe that the length of the “sine” curve over half a period, that is, the length of the graph of the function sin(t) from the point where t = 0 to the point where t = π , is

External links[edit]


after-content-x4