Order-6-4 triangular honeycomb – Wikipedia

before-content-x4

From Wikipedia, the free encyclopedia

after-content-x4

In the geometry of hyperbolic 3-space, the order-6-4 triangular honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,6,4}.

Geometry[edit]

It has four triangular tiling {3,6} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in an order-4 hexagonal tiling vertex arrangement.

It has a second construction as a uniform honeycomb, Schläfli symbol {3,61,1}, Coxeter diagram, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel nodes.png, with alternating types or colors of triangular tiling cells. In Coxeter notation the half symmetry is [3,6,4,1+] = [3,61,1].

Related polytopes and honeycombs[edit]

It a part of a sequence of regular polychora and honeycombs with triangular tiling cells: {3,6,p}

after-content-x4
{3,6,p} polytopes
Space H3
Form Paracompact Noncompact
Name {3,6,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
 
CDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png
{3,6,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel nodes.png
{3,6,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
{3,6,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel branch.png
… {3,6,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel branch.pngCDel labelinfin.png
Image H3 363 FC boundary.png Hyperbolic honeycomb 3-6-4 poincare.png Hyperbolic honeycomb 3-6-5 poincare.png Hyperbolic honeycomb 3-6-6 poincare.png Hyperbolic honeycomb 3-6-i poincare.png
Vertex
figure
Uniform tiling 63-t0.svg
{6,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
 
CDel branch 11.pngCDel split2.pngCDel node 1.png
H2 tiling 246-1.png
{6,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1-66.pngCDel nodes.png
H2 tiling 256-1.png
{6,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 266-4.png
{6,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1-66.pngCDel branch.png
H2 tiling 26i-4.png
{6,∞}
CDel node 1.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1-66.pngCDel branch.pngCDel labelinfin.png

Order-6-5 triangular honeycomb[edit]

In the geometry of hyperbolic 3-space, the order-6-3 triangular honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,6,5}. It has five triangular tiling, {3,6}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in an order-5 hexagonal tiling vertex arrangement.

Order-6-6 triangular honeycomb[edit]

Order-6-6 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,6,6}
{3,(6,3,6)}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel branch.png
Cells {3,6} Uniform tiling 63-t2.png
Faces {3}
Edge figure {6}
Vertex figure {6,6} H2 tiling 266-4.png
{(6,3,6)} H2 tiling 366-1.png
Dual {6,6,3}
Coxeter group [3,6,6]
[3,((6,3,6))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-6-6 triangular honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,6,6}. It has infinitely many triangular tiling, {3,6}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in an order-6 triangular tiling vertex arrangement.

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(6,3,6)}, Coxeter diagram, CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel branch.png, with alternating types or colors of triangular tiling cells. In Coxeter notation the half symmetry is [3,6,6,1+] = [3,((6,3,6))].

Order-6-infinite triangular honeycomb[edit]

Order-6-infinite triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,6,∞}
{3,(6,∞,6)}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel branch.pngCDel labelinfin.png
Cells {3,6} Uniform tiling 63-t2.png
Faces {3}
Edge figure {∞}
Vertex figure {6,∞} H2 tiling 26i-4.png
{(6,∞,6)} H2 tiling 66i-4.png
Dual {∞,6,3}
Coxeter group [∞,6,3]
[3,((6,∞,6))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-6-infinite triangular honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,6,∞}. It has infinitely many triangular tiling, {3,6}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in an infinite-order triangular tiling vertex arrangement.

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(6,∞,6)}, Coxeter diagram, CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-66.pngCDel branch.pngCDel labelinfin.png, with alternating types or colors of triangular tiling cells. In Coxeter notation the half symmetry is [3,6,∞,1+] = [3,((6,∞,6))].

See also[edit]

References[edit]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links[edit]

after-content-x4