Pressure-temperature-time path – Wikipedia

before-content-x4

A schematic clockwise P-T-t path. Metamorphic minerals alter with the changing P-T condition with time without reaching complete phase equilibrium, making P-T-t path tracking possible. From 1910 Ma (i.e. 1910 million years ago) to 1840 Ma, the rock experienced an increase in P-T conditions and formed mineral garnet, which is attributed to burial and heating. After that, the rock was continuously heated to the peak temperature and formed mineral cordierite. Meanwhile, it went through a great decrease in pressure around 1840 Ma due to an uplift event. Finally, the continuous drop in pressure and temperature in 1800 Ma resulted from further erosion and exhumation. The peak pressure is found to be reached before the peak temperature, owing to the relatively poor thermal conductivity of the rock upon increasing P-T condition, while the rock instantaneously experienced the pressure changes. Garnet and cordierite do not reach complete equilibrium when discovered on the surface, leaving a print of the past P-T environments.

The Pressure-Temperature-time path (P-T-t path) is a record of the pressure and temperature (P-T) conditions that a rock experienced in a metamorphic cycle from burial and heating to uplift and exhumation to the surface.[1]Metamorphism is a dynamic process which involves the changes in minerals and textures of the pre-existing rocks (protoliths) under different P-T conditions in solid state.[2] The changes in pressures and temperatures with time experienced by the metamorphic rocks are often investigated by petrological methods, radiometric dating techniques and thermodynamic modeling.[1][2]

after-content-x4

Metamorphic minerals are unstable upon changing P-T conditions.[1][3] The original minerals are commonly destroyed during solid state metamorphism and react to grow into new minerals that are relatively stable.[1][3]Water is generally involved in the reaction, either from the surroundings or generated by the reaction itself.[3] Usually, a large amount of fluids (e.g. water vapor, gas etc.) escape under increasing P-T conditions e.g. burial.[1] When the rock is later uplifted, due to the escape of fluids at an earlier stage, there is not enough fluids to permit all the new minerals to react back into the original minerals.[1] Hence, the minerals are not fully in equilibrium when discovered on the surface.[1] Therefore, the mineral assemblages in metamorphic rocks implicitly record the past P-T conditions that the rock has experienced, and investigating these minerals can supply information about the past metamorphic and tectonic history.[1]

The P-T-t paths are generally classified into two types: clockwise P-T-t paths, which are related to collision origin, and involve high pressures followed by high temperatures;[4] and anticlockwise P-T-t paths, which are usually of intrusion origin, and involve high temperatures before high pressures.[4] (The “clockwise” and “anticlockwise” names refer to the apparent direction of the paths in the Cartesian space, where the x-axis is temperature, and the y-axis is pressure.[3])

Stages in P-T-t paths[edit]

P-T-t paths often reflect various stages of the metamorphic cycle.[3] A metamorphic cycle implies the series of processes that a rock experienced from burial, heating to uplift and erosion.[3] The P-T conditions experienced by a rock throughout these processes can be classified into three main stages according to temperature changes:[3]

  1. Prograde (pre-peak) metamorphism: the process when the rock is buried and heated in environments such as basins or subduction zones.[3]Devolatilization reactions (release of gases e.g. CO2, H2O) are common.[3]
  2. Peak metamorphism: the maximum temperature reached throughout the metamorphic history.[3]
  3. Retrograde (post-peak) metamorphism: the metamorphism occurred during uplift and cooling of the rock.[3]

However, retrograde metamorphism may not always be observed in metamorphic rocks.[3] This is due to the loss of fluids (e.g. CO2, H2O) from prograde metamorphism, after which there is insufficient fluid to permit reverse reaction of the mineral assemblages.[1][3] Another reason is that the rocks are of inappropriate composition to generate all the minerals that record their complete metamorphic events.[1] On average, only one-in-twenty metamorphic rock samples display all the three stages of metamorphism.[1]

after-content-x4

P-T-t path trajectories[edit]

P-T-t paths can generally be classified into two types: clockwise P-T-t paths and anticlockwise P-T-t paths.[4]

Clockwise P-T-t paths[edit]

A typical clockwise P-T-t path (ideal case).

A common clockwise P-T-t path observed in reality.

Metamorphic rocks with clockwise P-T-t paths are commonly associated with a near-isothermal decompressional P-T trajectory.[5][6]

Clockwise P-T-t path normally consists of three parts:[2]

  1. Initial heating and compression until arriving a peak, a high pressure-low temperature peak is often observed. (Prograde metamorphism until peak)[2]
  2. Near-isothermal decompression after the peak (Stage 1 retrograde metamorphism)[2]
  3. Further decompression and cooling at a slow rate (Stage 2 retrograde metamorphism)[2]

One might expect that the rock reaches its peak metamorphism at the peak temperature and pressure at similar time, and near-isothermal decompression P-T-t path is observed at its stage 1 metamorphism.[2] However, in reality, the rocks commonly experience the peak pressure prior to the peak temperature.[2] This is due to the relative insensitivity of rocks to thermal events, i.e. poor conductivity of rock upon external thermal changes, whereas the rocks instantaneously experience pressure changes.[1]

Examples of metamorphic rocks that consist of clockwise P-T-t paths can be found at:

Anticlockwise P-T-t paths[edit]

A common anticlockwise P-T-t path.

Metamorphic rocks with anticlockwise P-T-t paths are commonly associated with a near-isobaric cooling P-T trajectory.[11]

Anticlockwise P-T-t path normally consists of two parts:[2]

  1. Initial heating and compression until reaching a peak, a low pressure-high temperature peak is often observed. (Prograde metamorphism until peak)[2]
  2. Near-isobaric cooling after the peak (Retrograde metamorphism)[2]

It is commonly observed that the peak temperature is reached prior to the peak pressure in anticlockwise P-T-t paths, as the rocks usually experienced the heat from the heat source before being extensively pressurized.[12]

Examples of metamorphic rocks that consist of anticlockwise P-T-t paths can be found at:

Reconstruction of P-T-t paths[edit]

The reconstruction of P-T-t paths includes two types of approaches:[1]

  1. Backward approach: the method of inversely inferring the metamorphic events from rock samples via traditional petrological investigation methods (e.g. optical microscopy, geothermobarometry etc.).[1]
  2. Forward approach: using thermal modeling techniques to work on the geological evolutionary model of rocks, and is usually used to validate results obtained in the backward approach.[1]

Backward approach (Petrological P-T-t reconstruction)[edit]

Petrological reconstruction is a backward approach which utilizes mineral compositions of rocks samples to deduce the possible P-T conditions.[1] Common techniques include optical microscopy, geothermobarometry, pseudosections, and geochronology.[1]

Optical microscopy[edit]

In qualitative reconstruction of P-T conditions, geologists examine thin sections under polarized light microscope to determine the sequence of formation of the minerals.[16] Due to incomplete replacement of the earlier formed minerals under changing P-T conditions,[16] minerals formed at various P-T environments can be found in the same rock specimen.[16][1] As different minerals have different optical characteristics and textures, determination of the mineral compositions in metamorphic rocks is made possible.[16]

Common textures at different stages of metamorphism:

  • Prograde (pre-peak) metamorphism
    • Mineral inclusions (poikiloblastic texture):[17] a mineral that is formed at a lower P-T condition is included in another mineral that is formed at a higher P-T condition. For example, in thin section examination, biotite crystal is included in a garnet grain, so biotite is considered to be formed at an earlier time.
  • Peak metamorphism
  • Retrograde (post-peak) metamorphism
    • Corona (reaction rim):[19] minerals formed at lower P-T conditions surrounding the higher grade mineral
    • Symplectite (finger-like texture):[16] intergrowth between retrograde minerals (formed at lower P-T conditions) and minerals formed at the peak stage (higher P-T conditions)
    • Mineral cross-cutting:[16] retrograde minerals cross-cut minerals that are formed at the peak stage

Not all rock samples exhibit all the P-T conditions they experienced throughout geological evolution.[1] This is attributed to the complexity of the geological processes, which the samples may have undergone complicated thermodynamic histories, or of inappropriate mineral compositions to produce minerals that record their metamorphic events.[1]

Geothermobarometry[edit]

An illustration of geothermobarometry. A line of temperature equilibrium (orange) and a line of pressure equilibrium (blue) of selected mineral assemblages found in the specimen are plotted on the P-T diagram. The intersection represents the likely P-T condition experienced by rock in its metamorphic history.

Geothermobarometry is a quantitative measurement of the P-T conditions, which is widely used in analyzing the P-T conditions of metamorphic and intrusive igneous rocks.[20]

The underlying principle of geothermobarometry is by utilizing the equilibrium constants of mineral assemblages in a rock to infer the metamorphic P-T conditions.[1][20] An electron microprobe is usually used in geothermobarometry to measure the distribution of components in the minerals and give precise determination of the chemical equilibrium within the specimen.[20]

Geothermobarometry is a combination of:

  • Geothermometry: the measurement of temperature changes using equilibrium of minerals that are insensitive to pressure variations,[1] and
  • Geobarometry: the determination of the pressure changes using equilibrium of minerals that are of little dependence on temperature change.[1]

Geothermometers are usually represented by exchange reactions, which are sensitive to temperature but with little effect under changing pressure, such as exchange of Fe2+ and Mg2+ between garnet-biotite reaction:[1]

after-content-x4