[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki5\/ddx41-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki5\/ddx41-wikipedia\/","headline":"DDX41 – Wikipedia","name":"DDX41 – Wikipedia","description":"From Wikipedia, the free encyclopedia Protein-coding gene in the species Homo sapiens Probable ATP-dependent RNA helicase DDX41 is an enzyme","datePublished":"2018-08-18","dateModified":"2018-08-18","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki5\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki5\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/c9645c498c9701c88b89b8537773dd7c?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/0\/0a\/PDB_2p6n_EBI.png\/180px-PDB_2p6n_EBI.png","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/0\/0a\/PDB_2p6n_EBI.png\/180px-PDB_2p6n_EBI.png","height":"135","width":"180"},"url":"https:\/\/wiki.edu.vn\/en\/wiki5\/ddx41-wikipedia\/","wordCount":3270,"articleBody":"From Wikipedia, the free encyclopediaProtein-coding gene in the species Homo sapiensProbable ATP-dependent RNA helicase DDX41 is an enzyme that in humans is encoded by the DDX41 gene.[5][6]DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of the DEAD box protein family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a member of this family. The function of this member has not been determined. Based on studies in Drosophila, the abstrakt gene is widely required during post-transcriptional gene expression.[6]Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. https:\/\/doi.org\/ 10.1182\/blood.2022018221.\/ref>References[edit]Further reading[edit]Maruyama K, Sugano S (1994). “Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides”. Gene. 138 (1\u20132): 171\u20134. doi:10.1016\/0378-1119(94)90802-8. PMID\u00a08125298.Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et\u00a0al. (1997). “Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library”. Gene. 200 (1\u20132): 149\u201356. doi:10.1016\/S0378-1119(97)00411-3. PMID\u00a09373149.Jurica MS, Licklider LJ, Gygi SR, et\u00a0al. (2002). “Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis”. RNA. 8 (4): 426\u201339. doi:10.1017\/S1355838202021088. PMC\u00a01370266. PMID\u00a011991638.Strausberg RL, Feingold EA, Grouse LH, et\u00a0al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899\u2013903. Bibcode:2002PNAS…9916899M. doi:10.1073\/pnas.242603899. PMC\u00a0139241. PMID\u00a012477932.Ota T, Suzuki Y, Nishikawa T, et\u00a0al. (2004). “Complete sequencing and characterization of 21,243 full-length human cDNAs”. Nat. Genet. 36 (1): 40\u20135. doi:10.1038\/ng1285. PMID\u00a014702039.Beausoleil SA, Jedrychowski M, Schwartz D, et\u00a0al. (2004). “Large-scale characterization of HeLa cell nuclear phosphoproteins”. Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130\u20135. Bibcode:2004PNAS..10112130B. doi:10.1073\/pnas.0404720101. PMC\u00a0514446. PMID\u00a015302935.Gerhard DS, Wagner L, Feingold EA, et\u00a0al. (2004). “The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)”. Genome Res. 14 (10B): 2121\u20137. doi:10.1101\/gr.2596504. PMC\u00a0528928. PMID\u00a015489334.Andersen JS, Lam YW, Leung AK, et\u00a0al. (2005). “Nucleolar proteome dynamics”. Nature. 433 (7021): 77\u201383. Bibcode:2005Natur.433…77A. doi:10.1038\/nature03207. PMID\u00a015635413. S2CID\u00a04344740.Abdul-Ghani M, Hartman KL, Ngsee JK (2005). “Abstrakt Interacts With and Regulates the Expression of Sorting Nexin-2”. J. Cell. Physiol. 204 (1): 210\u20138. doi:10.1002\/jcp.20285. PMC\u00a02963638. PMID\u00a015690390.Nousiainen M, Sillj\u00e9 HH, Sauer G, et\u00a0al. (2006). “Phosphoproteome analysis of the human mitotic spindle”. Proc. Natl. Acad. Sci. U.S.A. 103 (14): 5391\u20136. Bibcode:2006PNAS..103.5391N. doi:10.1073\/pnas.0507066103. PMC\u00a01459365. PMID\u00a016565220.Olsen JV, Blagoev B, Gnad F, et\u00a0al. (2006). “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks”. Cell. 127 (3): 635\u201348. doi:10.1016\/j.cell.2006.09.026. PMID\u00a017081983. S2CID\u00a07827573.Ewing RM, Chu P, Elisma F, et\u00a0al. (2007). “Large-scale mapping of human protein\u2013protein interactions by mass spectrometry”. Mol. Syst. Biol. 3 (1): 89. doi:10.1038\/msb4100134. PMC\u00a01847948. PMID\u00a017353931.PDB gallery2p6n: Human DEAD-box RNA helicase DDX41, helicase domain"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki5\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki5\/ddx41-wikipedia\/#breadcrumbitem","name":"DDX41 – Wikipedia"}}]}]