p-adic valuation – Wikipedia

From Wikipedia, the free encyclopedia

In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n.
It is denoted

νp(n){displaystyle nu _{p}(n)}

.
Equivalently,

νp(n){displaystyle nu _{p}(n)}

is the exponent to which

p{displaystyle p}

appears in the prime factorization of

n{displaystyle n}

.

The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value.
Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers

R{displaystyle mathbb {R} }

, the completion of the rational numbers with respect to the

p{displaystyle p}

-adic absolute value results in the p-adic numbers

Qp{displaystyle mathbb {Q} _{p}}

.[1]

Distribution of natural numbers by their 2-adic valuation, labeled with corresponding powers of two in decimal. Zero has an infinite valuation.

Definition and properties[edit]

Let p be a prime number.

Integers[edit]

The p-adic valuation of an integer

n{displaystyle n}

is defined to be

where

N{displaystyle mathbb {N} }

denotes the set of natural numbers and

mn{displaystyle mmid n}

denotes divisibility of

n{displaystyle n}

by

m{displaystyle m}

. In particular,

νp{displaystyle nu _{p}}

is a function

νp:ZN{}{displaystyle nu _{p}colon mathbb {Z} to mathbb {N} cup {infty }}

.[2]

For example,

ν2(12)=2{displaystyle nu _{2}(-12)=2}

,

ν3(12)=1{displaystyle nu _{3}(-12)=1}

, and

ν5(12)=0{displaystyle nu _{5}(-12)=0}

since

|12|=12=223150{displaystyle |{-12}|=12=2^{2}cdot 3^{1}cdot 5^{0}}

.

The notation

pkn{displaystyle p^{k}parallel n}

is sometimes used to mean

k=νp(n){displaystyle k=nu _{p}(n)}

.[3]

If

n{displaystyle n}

is a positive integer, then

this follows directly from

npνp(n){displaystyle ngeq p^{nu _{p}(n)}}

.

Rational numbers[edit]

The p-adic valuation can be extended to the rational numbers as the function

defined by

For example,

ν2(98)=3{displaystyle nu _{2}{bigl (}{tfrac {9}{8}}{bigr )}=-3}

and

ν3(98)=2{displaystyle nu _{3}{bigl (}{tfrac {9}{8}}{bigr )}=2}

since

98=2332{displaystyle {tfrac {9}{8}}=2^{-3}cdot 3^{2}}

.

Some properties are:

Moreover, if

νp(r)νp(s){displaystyle nu _{p}(r)neq nu _{p}(s)}

, then

where

min{displaystyle min }

is the minimum (i.e. the smaller of the two).

p-adic absolute value[edit]

The p-adic absolute value on

Q{displaystyle mathbb {Q} }

is the function

defined by

Thereby,

|0|p=p=0{displaystyle |0|_{p}=p^{-infty }=0}

for all

p{displaystyle p}

and
for example,

|12|2=22=14{displaystyle |{-12}|_{2}=2^{-2}={tfrac {1}{4}}}

and

|98|2=2(3)=8.{displaystyle {bigl |}{tfrac {9}{8}}{bigr |}_{2}=2^{-(-3)}=8.}

The p-adic absolute value satisfies the following properties.

Non-negativity
Positive-definiteness
Multiplicativity
Non-Archimedean

From the multiplicativity

|rs|p=|r|p|s|p{displaystyle |rs|_{p}=|r|_{p}|s|_{p}}

it follows that

|1|p=1=|1|p{displaystyle |1|_{p}=1=|-1|_{p}}

for the roots of unity

1{displaystyle 1}

and

1{displaystyle -1}

and consequently also

|r|p=|r|p.{displaystyle |{-r}|_{p}=|r|_{p}.}


The subadditivity

|r+s|p|r|p+|s|p{displaystyle |r+s|_{p}leq |r|_{p}+|s|_{p}}

follows from the non-Archimedean triangle inequality

|r+s|pmax(|r|p,|s|p){displaystyle |r+s|_{p}leq max left(|r|_{p},|s|_{p}right)}

.

The choice of base p in the exponentiation

pνp(r){displaystyle p^{-nu _{p}(r)}}

makes no difference for most of the properties, but supports the product formula:

where the product is taken over all primes p and the usual absolute value, denoted

|r|0{displaystyle |r|_{0}}

. This follows from simply taking the prime factorization: each prime power factor

pk{displaystyle p^{k}}

contributes its reciprocal to its p-adic absolute value, and then the usual Archimedean absolute value cancels all of them.

The p-adic absolute value is sometimes referred to as the “p-adic norm”,[citation needed] although it is not actually a norm because it does not satisfy the requirement of homogeneity.

A metric space can be formed on the set

Q{displaystyle mathbb {Q} }

with a (non-Archimedean, translation-invariant) metric

defined by

The completion of

Q{displaystyle mathbb {Q} }

with respect to this metric leads to the set

Qp{displaystyle mathbb {Q} _{p}}

of p-adic numbers.

See also[edit]

References[edit]

  1. ^
  2. ^ Ireland, K.; Rosen, M. (2000). A Classical Introduction to Modern Number Theory. New York: Springer-Verlag. p. 3.[ISBN missing]
  3. ^ Niven, Ivan; Zuckerman, Herbert S.; Montgomery, Hugh L. (1991). An Introduction to the Theory of Numbers (5th ed.). John Wiley & Sons. p. 4. ISBN 0-471-62546-9.
  4. ^ with the usual order relation, namely

    on the extended number line.

  5. ^ Khrennikov, A.; Nilsson, M. (2004). p-adic Deterministic and Random Dynamics. Kluwer Academic Publishers. p. 9.[ISBN missing]