[{"@context":"http:\/\/schema.org\/","@type":"BlogPosting","@id":"https:\/\/wiki.edu.vn\/en\/wiki6\/sumf2-wikipedia\/#BlogPosting","mainEntityOfPage":"https:\/\/wiki.edu.vn\/en\/wiki6\/sumf2-wikipedia\/","headline":"SUMF2 – Wikipedia","name":"SUMF2 – Wikipedia","description":"before-content-x4 From Wikipedia, the free encyclopedia after-content-x4 Protein-coding gene in the species Homo sapiens Sulfatase-modifying factor 2 is an enzyme","datePublished":"2014-01-02","dateModified":"2014-01-02","author":{"@type":"Person","@id":"https:\/\/wiki.edu.vn\/en\/wiki6\/author\/lordneo\/#Person","name":"lordneo","url":"https:\/\/wiki.edu.vn\/en\/wiki6\/author\/lordneo\/","image":{"@type":"ImageObject","@id":"https:\/\/secure.gravatar.com\/avatar\/44a4cee54c4c053e967fe3e7d054edd4?s=96&d=mm&r=g","url":"https:\/\/secure.gravatar.com\/avatar\/44a4cee54c4c053e967fe3e7d054edd4?s=96&d=mm&r=g","height":96,"width":96}},"publisher":{"@type":"Organization","name":"Enzyklop\u00e4die","logo":{"@type":"ImageObject","@id":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","url":"https:\/\/wiki.edu.vn\/wiki4\/wp-content\/uploads\/2023\/08\/download.jpg","width":600,"height":60}},"image":{"@type":"ImageObject","@id":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/0\/06\/PDB_1y4j_EBI.jpg\/180px-PDB_1y4j_EBI.jpg","url":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/thumb\/0\/06\/PDB_1y4j_EBI.jpg\/180px-PDB_1y4j_EBI.jpg","height":"135","width":"180"},"url":"https:\/\/wiki.edu.vn\/en\/wiki6\/sumf2-wikipedia\/","wordCount":4729,"articleBody":" (adsbygoogle = window.adsbygoogle || []).push({});before-content-x4From Wikipedia, the free encyclopedia (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4Protein-coding gene in the species Homo sapiensSulfatase-modifying factor 2 is an enzyme that in humans is encoded by the SUMF2 gene.[5][6] (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4The catalytic sites of sulfatases are only active if they contain a unique amino acid, C-alpha-formylglycine (FGly). The FGly residue is posttranslationally generated from a cysteine by enzymes with FGly-generating activity. The gene described in this record is a member of the sulfatase-modifying factor family and encodes a protein with a DUF323 domain that localizes to the lumen of the endoplasmic reticulum. This protein has low levels of FGly-generating activity but can heterodimerize with another family member – a protein with high levels of FGly-generating activity. Alternate transcriptional splice variants, encoding different isoforms, have been characterized.[6]References[edit]^ a b c GRCh38: Ensembl release 89: ENSG00000129103 – Ensembl, May 2017^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025538 – Ensembl, May 2017^ “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.^ Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A (May 2003). “The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases”. Cell. 113 (4): 445\u201356. doi:10.1016\/S0092-8674(03)00348-9. PMID\u00a012757706. S2CID\u00a015095377.^ a b “Entrez Gene: SUMF2 sulfatase modifying factor 2”.Further reading[edit]Bonaldo MF, Lennon G, Soares MB (1997). “Normalization and subtraction: two approaches to facilitate gene discovery”. Genome Res. 6 (9): 791\u2013806. doi:10.1101\/gr.6.9.791. PMID\u00a08889548.Strausberg RL, Feingold EA, Grouse LH, et\u00a0al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899\u2013903. Bibcode:2002PNAS…9916899M. doi:10.1073\/pnas.242603899. PMC\u00a0139241. PMID\u00a012477932.Dierks T, Schmidt B, Borissenko LV, et\u00a0al. (2003). “Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme”. Cell. 113 (4): 435\u201344. doi:10.1016\/S0092-8674(03)00347-7. PMID\u00a012757705. S2CID\u00a011571659.Hillier LW, Fulton RS, Fulton LA, et\u00a0al. (2003). “The DNA sequence of human chromosome 7”. Nature. 424 (6945): 157\u201364. Bibcode:2003Natur.424..157H. doi:10.1038\/nature01782. PMID\u00a012853948.Clark HF, Gurney AL, Abaya E, et\u00a0al. (2003). “The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment”. Genome Res. 13 (10): 2265\u201370. doi:10.1101\/gr.1293003. PMC\u00a0403697. PMID\u00a012975309.Landgrebe J, Dierks T, Schmidt B, von Figura K (2004). “The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes”. Gene. 316: 47\u201356. doi:10.1016\/S0378-1119(03)00746-7. PMID\u00a014563551.Colland F, Jacq X, Trouplin V, et\u00a0al. (2004). “Functional Proteomics Mapping of a Human Signaling Pathway”. Genome Res. 14 (7): 1324\u201332. doi:10.1101\/gr.2334104. PMC\u00a0442148. PMID\u00a015231748.Suzuki Y, Yamashita R, Shirota M, et\u00a0al. (2004). “Sequence Comparison of Human and Mouse Genes Reveals a Homologous Block Structure in the Promoter Regions”. Genome Res. 14 (9): 1711\u20138. doi:10.1101\/gr.2435604. PMC\u00a0515316. PMID\u00a015342556.Gerhard DS, Wagner L, Feingold EA, et\u00a0al. (2004). “The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)”. Genome Res. 14 (10B): 2121\u20137. doi:10.1101\/gr.2596504. PMC\u00a0528928. PMID\u00a015489334.Dickmanns A, Schmidt B, Rudolph MG, et\u00a0al. (2005). “Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme”. J. Biol. Chem. 280 (15): 15180\u20137. doi:10.1074\/jbc.M414317200. PMID\u00a015687489.Mariappan M, Preusser-Kunze A, Balleininger M, et\u00a0al. (2005). “Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme”. J. Biol. Chem. 280 (15): 15173\u20139. doi:10.1074\/jbc.M413698200. PMID\u00a015708861.Zito E, Fraldi A, Pepe S, et\u00a0al. (2005). “Sulphatase activities are regulated by the interaction of sulphatase-modifying factor 1 with SUMF2”. EMBO Rep. 6 (7): 655\u201360. doi:10.1038\/sj.embor.7400454. PMC\u00a01369113. PMID\u00a015962010.Rual JF, Venkatesan K, Hao T, et\u00a0al. (2005). “Towards a proteome-scale map of the human protein-protein interaction network”. Nature. 437 (7062): 1173\u20138. Bibcode:2005Natur.437.1173R. doi:10.1038\/nature04209. PMID\u00a016189514. S2CID\u00a04427026.Otsuki T, Ota T, Nishikawa T, et\u00a0al. (2007). “Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries”. DNA Res. 12 (2): 117\u201326. doi:10.1093\/dnares\/12.2.117. PMID\u00a016303743.Kimura K, Wakamatsu A, Suzuki Y, et\u00a0al. (2006). “Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes”. Genome Res. 16 (1): 55\u201365. doi:10.1101\/gr.4039406. PMC\u00a01356129. PMID\u00a016344560.PDB gallery1y4j: Crystal structure of the paralogue of the human formylglycine generating enzyme (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4 (adsbygoogle = window.adsbygoogle || []).push({});after-content-x4"},{"@context":"http:\/\/schema.org\/","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki6\/#breadcrumbitem","name":"Enzyklop\u00e4die"}},{"@type":"ListItem","position":2,"item":{"@id":"https:\/\/wiki.edu.vn\/en\/wiki6\/sumf2-wikipedia\/#breadcrumbitem","name":"SUMF2 – Wikipedia"}}]}]