ワイエルシュトラス関数 – Wikipedia

ワイエルシュトラス関数(区間 [−2, 2])。 この関数はフラクタル挙動を示す: スケールを変えると似た構造が現れる(赤色の円)自己相似性をもつ。

ワイエルシュトラス関数(ワイエルシュトラスかんすう、英: Weierstrass function)は、1872年にカール・ワイエルシュトラスにより提示された実数関数で、連続関数であるにもかかわらず至るところ微分不可能な関数である。病的な関数英語版の例として取り上げられることがある。

「孤立点を除くと連続関数は微分可能である」という認識を変えた出版された初めての例として、ワイエルシュトラス関数は歴史的に重要である。

ワイエルシュトラス関数[編集]

定義[編集]

ワイエルシュトラスのオリジナル論文において、この関数は次のように定義される。

ここで、0 < a < 1, b は正の奇数整数。また、