Auswahlsatz von Kuratowski und Ryll-Nardzewski – Wikipedia

before-content-x4

Der Auswahlsatz von Kuratowski und Ryll-Nardzewski, englisch Kuratowski-Ryll Nardzewski Selection Theorem, ist ein Lehrsatz des mathematischen Gebiets der Analysis, der auf die beiden polnischen Mathematiker Kazimierz Kuratowski und Czesław Ryll-Nardzewski zurückgeht. Der Satz behandelt die Frage, unter welchen Bedingungen einer mengenwertigen Abbildung zwischen einem Messraum und einem topologischen Raum unter Berücksichtigung von Messbarkeitsgesichtspunkten eine Auswahlabbildung zugehört.[1]

after-content-x4

Anknüpfend an die Darstellung von Leszek Gasiński und Nikolaos S. Papageorgiou lässt sich der genannte Auswahlsatz folgendermaßen formulieren:[2]

Gegeben seien ein Messraum

.

Weiter gegeben sei eine messbare mengenwertige Abbildung

abgeschlossen ist.

Ist dabei

.

Anwendung[Bearbeiten | Quelltext bearbeiten]

Aufbauend auf den Auswahlsatz von Kuratowski und Ryll-Nardzewski lässt sich ein weiteres Resultat gewinnen, welches die Frage der Messbarkeit von mengenwertigen Abbildungen betrifft. Es besagt folgendes:[3]

Gegeben seien ein Messraum

,

welche jedem

zuordnet.

Dann sind die folgenden beiden Aussagen gleichwertig:

(a)

ist messbar.

(b) Es gibt eine Funktionenfolge von messbaren Funktionen

, welche die folgenden beiden Bedingungen erfüllt:

(b1) Für

gehörige Auswahlabbildung.

(b2) Für jedes

.[A 1]

Mit dem Auswahlsatz von Kuratowski und Ryll-Nardzewski direkt verwandt ist ein anderer (bekannter) Auswahlsatz, der die gleiche Frage unter Stetigkeitsgesichtspunkten statt unter Messbarkeitsgesichtspunkten behandelt und nach seinem Entdecker, dem US-amerikanischen Mathematiker Ernest Arthur Michael, als Auswahlsatz von Michael (englisch Michael Selection Theorem) bezeichnet wird.[4][5]

Anknüpfend an die Darstellung von Winfried Kaballo lässt sich dieser Satz von folgendermaßen formulieren:[6]

Gegeben seien ein topologischer Raum

.

Weiter gegeben sei eine unterhalbstetige mengenwertige Abbildung

zugleich abgeschlossen und konvex ist.

Ist dabei

.

Folgerung[Bearbeiten | Quelltext bearbeiten]

Aus dem Auswahlsatz von Michael gewinnt man auf direktem Wege ein Resultat, welches für die Frage der Existenz von Lösungen von Gleichungen bedeutsam ist. Es geht auf eine in 1952 von Robert G. Bartle und Lawrence M. Graves vorgelegte wissenschaftliche Arbeit zurück und wird auch als Satz von Bartle-Graves (englisch Bartle-Graves Theorem) genannt. An Winfried Kaballo anknüpfend kann dieser Satz wie folgt angegeben werden:[7]

Gegeben seien zwei Banachräume

sein soll.

Die zugehörige Quotientenabbildung sei

.

Dann gilt:
Zu jeder reellen Zahl

stets die Ungleichung

erfüllt ist.
  • Robert G. Bartle, Lawrence M. Graves: Mappings between function spaces. In: Transactions of the American Mathematical Society. Band 72, 1952, S. 400–413 (MR0047910).
  • J. M. Borwein, Asen L. Dontchev: On the Bartle-Graves theorem. In: Proceedings of the American Mathematical Society. Band 131, 2003, S. 2553–2560 (MR1974655).
  • Leszek Gasiński, Nikolaos S. Papageorgiou: Exercises in Analysis. Part 1 (= Problem Books in Mathematics). Springer-Verlag, Cham, Heidelberg, New York, Dordrecht, London 2014, ISBN 978-3-319-06175-7, doi:10.1007/978-3-319-06176-4 (MR3307732).
  • Winfried Kaballo: Aufbaukurs Funktionalanalysis und Operatortheorie. Distributionen – lokalkonvexe Methoden – Spektraltheorie. Springer Spektrum, Berlin, Heidelberg 2014, ISBN 978-3-642-37793-8, doi:10.1007/978-3-642-37794-5 (MR3672798).
  1. Mit dem oberen Querbalken ist die jeweilige abgeschlossene Hülle im topologischen Sinne gemeint.
  2. Mit den Auswahlabbildungen verwandt sind die Auswahlfunktionen.
  3. Man nennt
  4. Für den Beweis dieses Satzes benötigt man die Zuhilfenahme des Zorn’schen Lemmas und damit die Annahme der Gültigkeit des Auswahlaxioms. Siehe Horst Schubert: Topologie., 4. Auflage, B. G. Teubner Verlag, Stuttgart 1975, S. 83–88!
  1. Leszek Gasiński, Nikolaos S. Papageorgiou: Exercises in Analysis. Part 1. 2014, S. 643 ff.
  2. Gasiński/Papageorgiou, op. cit., S. 643–644
  3. ab Gasiński/Papageorgiou, op. cit., S. 645
  4. Winfried Kaballo: Aufbaukurs Funktionalanalysis und Operatortheorie 2014, 198 ff.
  5. Gasiński/Papageorgiou, op. cit., S. 229–230
  6. Kaballo, op. cit., S. 216
  7. Kaballo, op. cit., S. 197–198, 215–218

after-content-x4