Appell–Humbert theorem – Wikipedia

From Wikipedia, the free encyclopedia

Describes the line bundles on a complex torus or complex abelian variety

In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety.
It was proved for 2-dimensional tori by Appell (1891) and Humbert (1893), and in general by Lefschetz (1921)

Statement[edit]

Suppose that

T{displaystyle T}

is a complex torus given by

V/Λ{displaystyle V/Lambda }

where

Λ{displaystyle Lambda }

is a lattice in a complex vector space

V{displaystyle V}

. If

H{displaystyle H}

is a Hermitian form on

V{displaystyle V}

whose imaginary part

E=Im(H){displaystyle E={text{Im}}(H)}

is integral on

Λ×Λ{displaystyle Lambda times Lambda }

, and

α{displaystyle alpha }

is a map from

Λ{displaystyle Lambda }

to the unit circle

U(1)={zC:|z|=1}{displaystyle U(1)={zin mathbb {C} :|z|=1}}

, called a semi-character, such that

then

is a 1-cocycle of

Λ{displaystyle Lambda }

defining a line bundle on

T{displaystyle T}

. For the trivial Hermitian form, this just reduces to a character. Note that the space of character morphisms is isomorphic with a real torus

HomAb(Λ,U(1))R2n/Z2n{displaystyle {text{Hom}}_{textbf {Ab}}(Lambda ,U(1))cong mathbb {R} ^{2n}/mathbb {Z} ^{2n}}

if

ΛZ2n{displaystyle Lambda cong mathbb {Z} ^{2n}}

since any such character factors through

R{displaystyle mathbb {R} }

composed with the exponential map. That is, a character is a map of the form

exp(2πil,){displaystyle {text{exp}}(2pi ilangle l^{*},-rangle )}

for some covector

lV{displaystyle l^{*}in V^{*}}

. The periodicity of

exp(2πif(x)){displaystyle {text{exp}}(2pi if(x))}

for a linear

f(x){displaystyle f(x)}

gives the isomorphism of the character group with the real torus given above. In fact, this torus can be equipped with a complex structure, giving the dual complex torus.

Explicitly, a line bundle on

T=V/Λ{displaystyle T=V/Lambda }

may be constructed by descent from a line bundle on

V{displaystyle V}

(which is necessarily trivial) and a descent data, namely a compatible collection of isomorphisms

uOVOV{displaystyle u^{*}{mathcal {O}}_{V}to {mathcal {O}}_{V}}

, one for each

uU{displaystyle uin U}

. Such isomorphisms may be presented as nonvanishing holomorphic functions on

V{displaystyle V}

, and for each

u{displaystyle u}

the expression above is a corresponding holomorphic function.

The Appell–Humbert theorem (Mumford 2008) says that every line bundle on

T{displaystyle T}

can be constructed like this for a unique choice of

H{displaystyle H}

and

α{displaystyle alpha }

satisfying the conditions above.

Ample line bundles[edit]

Lefschetz proved that the line bundle

L{displaystyle L}

, associated to the Hermitian form

H{displaystyle H}

is ample if and only if

H{displaystyle H}

is positive definite, and in this case

L3{displaystyle L^{otimes 3}}

is very ample. A consequence is that the complex torus is algebraic if and only if there is a positive definite Hermitian form whose imaginary part is integral on

Λ×Λ{displaystyle Lambda times Lambda }

See also[edit]

References[edit]

  • Appell, P. (1891), “Sur les functiones périodiques de deux variables”, Journal de Mathématiques Pures et Appliquées, Série IV, 7: 157–219
  • Humbert, G. (1893), “Théorie générale des surfaces hyperelliptiques”, Journal de Mathématiques Pures et Appliquées, Série IV, 9: 29–170, 361–475
  • Lefschetz, Solomon (1921), “On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties”, Transactions of the American Mathematical Society, Providence, R.I.: American Mathematical Society, 22 (3): 327–406, doi:10.2307/1988897, ISSN 0002-9947, JSTOR 1988897
  • Lefschetz, Solomon (1921), “On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties”, Transactions of the American Mathematical Society, Providence, R.I.: American Mathematical Society, 22 (4): 407–482, doi:10.2307/1988964, ISSN 0002-9947, JSTOR 1988964
  • Mumford, David (2008) [1970], Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Providence, R.I.: American Mathematical Society, ISBN 978-81-85931-86-9, MR 0282985, OCLC 138290