ランデン変換 – Wikipedia

ランデン変換 (Landen’s transformation) は、数学において楕円積分や楕円関数の母数を増減させる恒等式。楕円関数の数値計算に有用である。

楕円積分のランデン変換とガウス変換[編集]

第一種楕円積分

F(sin⁡α,k)=∫t=0sin⁡αdt1−t21−k2t2=∫ϕ=0αdϕ1−k2sin2⁡ϕ{displaystyle Fleft(sin alpha ,kright)=int _{t=0}^{sin alpha }{frac {dt}{{sqrt {1-t^{2}}}{sqrt {1-k^{2}t^{2}}}}}=int _{phi =0}^{alpha }{frac {dphi }{sqrt {1-k^{2}sin ^{2}phi }}}}

につき、次の恒等式をランデン変換という。

F(sin⁡α,k)=21+kF(12(1+k)2sin2⁡α+(1−k2sin2⁡ϕ−1−sin2⁡ϕ)2,2k1+k){displaystyle Fleft(sin alpha ,kright)={frac {2}{1+k}}Fleft({frac {1}{2}}{sqrt {left(1+kright)^{2}sin ^{2}alpha +left({sqrt {1-k^{2}sin ^{2}phi }}-{sqrt {1-sin ^{2}phi }}right)^{2}}},{frac {2{sqrt {k}}}{1+k}}right)}

同じく、次の恒等式をガウス変換という。

F(sin⁡α,k)=11+kF((1+k)sin⁡α1+ksin2⁡α,2k1+k){displaystyle Fleft(sin alpha ,kright)={frac {1}{1+k}}Fleft({frac {(1+k)sin alpha }{1+ksin ^{2}alpha }},{frac {2{sqrt {k}}}{1+k}}right)}

ランデン変換の導出[編集]

ランデン変換は

sin⁡ϕ=21+ksin⁡θcos⁡θ1−4k(1+k)2sin2⁡θ{displaystyle sin phi ={frac {{frac {2}{1+k}}sin theta cos theta }{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}}


cos⁡ϕdϕ=21+k(cos2⁡θ−sin2⁡θ)1−4k(1+k)2sin2⁡θdθ+21+k(4k(1+k)2sin2⁡θcos2⁡θ)(1−4k(1+k)2sin2⁡θ)3dθ=21+k(1−21+ksin2⁡θ)(1−2k1+ksin2⁡θ)(1−4k(1+k)2sin2⁡θ)3dθ{displaystyle {begin{aligned}cos phi {dphi }&={frac {{frac {2}{1+k}}left(cos ^{2}theta -sin ^{2}theta right)}{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}{dtheta }+{frac {{frac {2}{1+k}}left({frac {4k}{(1+k)^{2}}}sin ^{2}theta cos ^{2}theta right)}{left({sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)^{3}}}{dtheta }&={frac {{frac {2}{1+k}}left(1-{frac {2}{1+k}}sin ^{2}theta right)left(1-{frac {2k}{1+k}}sin ^{2}theta right)}{left({sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)^{3}}}{dtheta }end{aligned}}}

の置換により導かれる。

F(sin⁡α,k)=∫ϕ=0αdϕ1−k2sin2⁡ϕ=∫ϕ=0αcos⁡ϕdϕ1−sin2⁡ϕ1−k2sin2⁡ϕ=∫θ=0β21+k(1−21+ksin2⁡θ)(1−2k1+ksin2⁡θ)(1−4k(1+k)2sin2⁡θ)31−4(1+k)2sin2⁡θcos2⁡θ1−4k(1+k)2sin2⁡θ1−k24(1+k)2sin2⁡θcos2⁡θ1−4k(1+k)2sin2⁡θdθ=∫θ=0β21+k(1−21+ksin2⁡θ)(1−2k1+ksin2⁡θ)(1−4k(1+k)2sin2⁡θ)31−21+ksin2⁡θ1−4k(1+k)2sin2⁡θ1−2k1+ksin2⁡θ1−4k(1+k)2sin2⁡θdθ=21+k∫θ=0βdθ1−4k(1+k)2sin2⁡θ=21+kF(sin⁡β,2k1+k){displaystyle {begin{aligned}Fleft(sin alpha ,kright)&=int _{phi =0}^{alpha }{frac {dphi }{sqrt {1-k^{2}sin ^{2}phi }}}&=int _{phi =0}^{alpha }{frac {cos phi {dphi }}{{sqrt {1-sin ^{2}phi }}{sqrt {1-k^{2}sin ^{2}phi }}}}&=int _{theta =0}^{beta }{frac {frac {{frac {2}{1+k}}left(1-{frac {2}{1+k}}sin ^{2}theta right)left(1-{frac {2k}{1+k}}sin ^{2}theta right)}{left({sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)^{3}}}{{sqrt {1-{frac {{frac {4}{(1+k)^{2}}}sin ^{2}theta cos ^{2}theta }{1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}}{sqrt {1-k^{2}{frac {{frac {4}{(1+k)^{2}}}sin ^{2}theta cos ^{2}theta }{1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}}}}{dtheta }&=int _{theta =0}^{beta }{frac {frac {{frac {2}{1+k}}left(1-{frac {2}{1+k}}sin ^{2}theta right)left(1-{frac {2k}{1+k}}sin ^{2}theta right)}{left({sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)^{3}}}{{frac {1-{frac {2}{1+k}}sin ^{2}theta }{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}};{frac {1-{frac {2k}{1+k}}sin ^{2}theta }{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}}}{dtheta }&={frac {2}{1+k}}int _{theta =0}^{beta }{frac {dtheta }{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}&={frac {2}{1+k}}Fleft(sin beta ,{frac {2{sqrt {k}}}{1+k}}right)end{aligned}}}

sin⁡β{displaystyle sin beta }

を陽にすると

である。

ガウス変換の導出[編集]

ガウス変換は

sin⁡ϕ=21+ksin⁡θ1+1−4k(1+k)2sin2⁡θ{displaystyle sin phi ={frac {{frac {2}{1+k}}sin theta }{1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}}}


cos⁡ϕdϕ=21+kcos⁡θ1+1−4k(1+k)2sin2⁡θdθ+21+k(4k(1+k)2sin2⁡θcos⁡θ)1−4k(1+k)2sin2⁡θ(1+1−4k(1+k)2sin2⁡θ)2dθ=21+kcos⁡θ1−4k(1+k)2sin2⁡θ(1+1−4k(1+k)2sin2⁡θ)dθ{displaystyle {begin{aligned}cos phi {dphi }&={frac {{frac {2}{1+k}}cos theta }{1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}}{dtheta }+{frac {{frac {2}{1+k}}left({frac {4k}{(1+k)^{2}}}sin ^{2}theta cos theta right)}{{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}left(1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)^{2}}}{dtheta }&={frac {{frac {2}{1+k}}cos theta }{{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}left(1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)}}{dtheta }end{aligned}}}

の置換により導かれる。

F(α,k)=∫ϕ=0αdϕ1−k2sin2⁡ϕ=∫ϕ=0αcos⁡ϕdϕ1−sin2⁡ϕ1−k2sin2⁡ϕ=∫θ=0β21+kcos⁡θ1−4k(1+k)2sin2⁡θ(1+1−4k(1+k)2sin2⁡θ)2+21−4k(1+k)2sin2⁡θ−41+ksin2⁡θ1+1−4k(1+k)2sin2⁡θ2+21−4k(1+k)2sin2⁡θ−4k1+ksin2⁡θ1+1−4k(1+k)2sin2⁡θdθ=∫θ=0β21+kcos⁡θ1−4k(1+k)2sin2⁡θ(1+1−4k(1+k)2sin2⁡θ)21−sin2⁡θ2+21−4k(1+k)2sin2⁡θ−4k(1+k)2sin2⁡θ(1+1−4k(1+k)2sin2⁡θ)2dθ=11+k∫θ=0β11−4k(1+k)2sin2⁡θ=11+kF(β,2k1+k){displaystyle {begin{aligned}Fleft(alpha ,kright)&=int _{phi =0}^{alpha }{frac {dphi }{sqrt {1-k^{2}sin ^{2}phi }}}&=int _{phi =0}^{alpha }{frac {cos phi {dphi }}{{sqrt {1-sin ^{2}phi }}{sqrt {1-k^{2}sin ^{2}phi }}}}&=int _{theta =0}^{beta }{frac {frac {{frac {2}{1+k}}cos theta }{{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}left(1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)}}{{frac {sqrt {2+2{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}-{frac {4}{1+k}}sin ^{2}theta }}{1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}};{frac {sqrt {2+2{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}-{frac {4k}{1+k}}sin ^{2}theta }}{1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}}}}{dtheta }&=int _{theta =0}^{beta }{frac {frac {{frac {2}{1+k}}cos theta }{{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}left(1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)}}{frac {2{sqrt {1-sin ^{2}theta }}{sqrt {2+2{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}{left(1+{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}right)^{2}}}}{dtheta }&={frac {1}{1+k}}int _{theta =0}^{beta }{frac {1}{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}theta }}}&={frac {1}{1+k}}Fleft(beta ,{frac {2{sqrt {k}}}{1+k}}right)end{aligned}}}

sin⁡β{displaystyle sin beta }

を陽にすると

である。

楕円関数のランデン変換[編集]

次の恒等式を楕円関数の上昇ランデン変換という。

sn⁡(u,k)=21+ksn⁡(1+k2u,2k1+k)cn⁡(1+k2u,2k1+k)dn⁡(1+k2u,2k1+k){displaystyle operatorname {sn} left(u,kright)={frac {{tfrac {2}{1+k}}operatorname {sn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)operatorname {cn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}{operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}


cn⁡(u,k)=21+kdn2⁡(1+k2u,2k1+k)−1−k1+k4k(1+k)2dn⁡(1+k2u,2k1+k){displaystyle operatorname {cn} left(u,kright)={frac {{tfrac {2}{1+k}}operatorname {dn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)-{tfrac {1-k}{1+k}}}{{tfrac {4k}{(1+k)^{2}}}operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}


dn⁡(u,k)=2k1+kdn2⁡(1+k2u,2k1+k)+1−k1+k4k(1+k)2dn⁡(1+k2u,2k1+k){displaystyle operatorname {dn} left(u,kright)={frac {{tfrac {2k}{1+k}}operatorname {dn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)+{tfrac {1-k}{1+k}}}{{tfrac {4k}{(1+k)^{2}}}operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}

次の恒等式を楕円関数の下降ランデン変換という。

sn⁡(u,k)=21+1−k2sn⁡(1+1−k22u,1−1−k21+1−k2)1+1−1−k21+1−k2sn2⁡(1+1−k22u,1−1−k21+1−k2){displaystyle operatorname {sn} left(u,kright)={frac {{tfrac {2}{1+{sqrt {1-k^{2}}}}}operatorname {sn} left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}{1+{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}operatorname {sn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}}}


cn⁡(u,k)=cn⁡(1+1−k22u,1−1−k21+1−k2)dn⁡(1+1−k22u,1−1−k21+1−k2)1+1−1−k21+1−k2sn2⁡(1+1−k22u,1−1−k21+1−k2){displaystyle operatorname {cn} left(u,kright)={frac {operatorname {cn} left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)operatorname {dn} left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}{1+{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}operatorname {sn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}}}


dn⁡(u,k)=1−1−k21+1−k2−(1−dn2⁡(1+1−k22u,1−1−k21+1−k2))1−1−k21+1−k2+(1−dn2⁡(1+1−k22u,1−1−k21+1−k2)){displaystyle operatorname {dn} left(u,kright)={frac {{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}-left(1-operatorname {dn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)right)}{{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}+left(1-operatorname {dn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)right)}}}

当初の母数が

0<k<1{displaystyle 0

であれば、上昇ランデン変換は母数を増加させ、下降ランデン変換は母数を減少させる。上昇ランデン変換を繰り返すことにより、母数が1に収束し、楕円関数は双曲線関数に近似される。下降ランデン変換を繰り返すことにより、母数が0に収束し、楕円関数は三角関数に近似される。この性質により、ランデン変換は楕円関数の数値計算に有用である。

導出[編集]

楕円積分のランデン変換により

sin⁡α=21+ksin⁡βcos⁡β1−4k(1+k)2sin2⁡β{displaystyle sin alpha ={frac {{frac {2}{1+k}}sin beta cos beta }{sqrt {1-{frac {4k}{(1+k)^{2}}}sin ^{2}beta }}}}

のときに

u=F(α,k)=21+kF(β,2k1+k){displaystyle u=Fleft(alpha ,kright)={tfrac {2}{1+k}}Fleft(beta ,{tfrac {2{sqrt {k}}}{1+k}}right)}


sn⁡(u,k)=sin⁡α{displaystyle operatorname {sn} left(u,kright)=sin alpha }


sn⁡(1+k2u,2k1+k)=sin⁡β{displaystyle operatorname {sn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)=sin beta }

であるから

sn⁡(u,k)=21+ksn⁡(1+k2u,2k1+k)1−sn2⁡(1+k2u,2k1+k)1−(2k1+k)2sn2⁡(1+k2u,2k1+k)=21+ksn⁡(1+k2u,2k1+k)cn⁡(1+k2u,2k1+k)dn⁡(1+k2u,2k1+k){displaystyle operatorname {sn} left(u,kright)={frac {{tfrac {2}{1+k}}operatorname {sn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right){sqrt {1-operatorname {sn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}{sqrt {1-left({tfrac {2{sqrt {k}}}{1+k}}right)^{2}operatorname {sn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}={frac {{tfrac {2}{1+k}}operatorname {sn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)operatorname {cn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}{operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}


cn⁡(u,k)=1−sn2⁡(u,k)=1−21+ksn2⁡(1+k2u,2k1+k)dn⁡(1+k2u,2k1+k)=21+kdn2⁡(1+k2u,2k1+k)−1−k1+k4k(1+k)2dn⁡(1+k2u,2k1+k){displaystyle operatorname {cn} left(u,kright)={sqrt {1-operatorname {sn} ^{2}left(u,kright)}}={frac {1-{tfrac {2}{1+k}}operatorname {sn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}{operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}={frac {{tfrac {2}{1+k}}operatorname {dn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)-{tfrac {1-k}{1+k}}}{{tfrac {4k}{(1+k)^{2}}}operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}


dn⁡(u,k)=1−k2sn2⁡(u,k)=1−2k1+ksn2⁡(1+k2u,2k1+k)dn⁡(1+k2u,2k1+k)=2k1+kdn2⁡(1+k2u,2k1+k)+1−k1+k4k(1+k)2dn⁡(1+k2u,2k1+k){displaystyle operatorname {dn} left(u,kright)={sqrt {1-k^{2}operatorname {sn} ^{2}left(u,kright)}}={frac {1-{tfrac {2k}{1+k}}operatorname {sn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}{operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}={frac {{tfrac {2k}{1+k}}operatorname {dn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)+{tfrac {1-k}{1+k}}}{{tfrac {4k}{(1+k)^{2}}}operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}

である。楕円積分のガウス変換により

sin⁡β=(1+k)sin⁡α1+ksin2⁡α{displaystyle sin beta ={frac {(1+k)sin alpha }{1+ksin ^{2}alpha }}}

のときに

u=F(α,k)=11+kF(β,2k1+k){displaystyle u=Fleft(alpha ,kright)={tfrac {1}{1+k}}Fleft(beta ,{tfrac {2{sqrt {k}}}{1+k}}right)}


sn⁡(u,k)=sin⁡α{displaystyle operatorname {sn} left(u,kright)=sin alpha }


sn⁡((1+k)u,2k1+k)=sin⁡β{displaystyle operatorname {sn} left((1+k)u,{tfrac {2{sqrt {k}}}{1+k}}right)=sin beta }

であるから

sn⁡((1+k)u,2k1+k)=(1+k)sn⁡α1+ksn2⁡α{displaystyle operatorname {sn} left((1+k)u,{tfrac {2{sqrt {k}}}{1+k}}right)={frac {(1+k)operatorname {sn} alpha }{1+koperatorname {sn} ^{2}alpha }}}

であるが、

u{displaystyle u}

u1+k{displaystyle {tfrac {u}{1+k}}}

に改め、

k{displaystyle k}

1−1−k21+1−k2{displaystyle {tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}}

に改めれば

sn⁡(u,k)=21+1−k2sn⁡(1+1−k22u,1−1−k21+1−k2)1+1−1−k21+1−k2sn2⁡(1+1−k22u,1−1−k21+1−k2){displaystyle operatorname {sn} left(u,kright)={frac {{tfrac {2}{1+{sqrt {1-k^{2}}}}}operatorname {sn} left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}{1+{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}operatorname {sn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}}}


cn⁡(u,k)=1−sn2⁡(u,k)=cn⁡(1+1−k22u,1−1−k21+1−k2)dn⁡(1+1−k22u,1−1−k21+1−k2)1+1−1−k21+1−k2sn2⁡(1+1−k22u,1−1−k21+1−k2){displaystyle {begin{aligned}operatorname {cn} left(u,kright)&={sqrt {1-operatorname {sn} ^{2}left(u,kright)}}&={frac {operatorname {cn} left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)operatorname {dn} left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}{1+{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}operatorname {sn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}}end{aligned}}}


dn⁡(u,k)=1−k2sn2⁡(u,k)=1−1−1−k21+1−k2sn2⁡(1+1−k22u,1−1−k21+1−k2)1+1−1−k21+1−k2sn2⁡(1+1−k22u,1−1−k21+1−k2)=dn2⁡(1+1−k22u,1−1−k21+1−k2)−21−k21+1−k221+1−k2−dn2⁡(1+1−k22u,1−1−k21+1−k2){displaystyle {begin{aligned}operatorname {dn} left(u,kright)&={sqrt {1-k^{2}operatorname {sn} ^{2}left(u,kright)}}&={frac {1-{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}operatorname {sn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}{1+{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}operatorname {sn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}}&={frac {operatorname {dn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)-{tfrac {2{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}}{{tfrac {2}{1+{sqrt {1-k^{2}}}}}-operatorname {dn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}}end{aligned}}}

となる。

虚数変換[編集]

上昇ランデン変換と下降ランデン変換は虚数変換により交替する。

sn⁡(iu,1−k2)=isc⁡(u,k)=isn⁡(u,k)cn⁡(u,k){displaystyle operatorname {sn} left(iu,{sqrt {1-k^{2}}}right)=ioperatorname {sc} left(u,kright)={frac {ioperatorname {sn} left(u,kright)}{operatorname {cn} left(u,kright)}}}

上昇ランデン変換により

isn⁡(u,k)cn⁡(u,k)=2i1+ksn⁡(1+k2u,2k1+k)cn⁡(1+k2u,2k1+k)dn⁡(1+k2u,2k1+k)21+kdn2⁡(1+k2u,2k1+k)−1−k1+k4k(1+k)2dn⁡(1+k2u,2k1+k)=4ki(1+k)2sn⁡(1+k2u,2k1+k)cn⁡(1+k2u,2k1+k)dn2⁡(1+k2u,2k1+k)−1−k1+k{displaystyle {begin{aligned}{frac {ioperatorname {sn} left(u,kright)}{operatorname {cn} left(u,kright)}}&={frac {frac {{tfrac {2i}{1+k}}operatorname {sn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)operatorname {cn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}{operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}{frac {{tfrac {2}{1+k}}operatorname {dn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)-{tfrac {1-k}{1+k}}}{{tfrac {4k}{(1+k)^{2}}}operatorname {dn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}}}&={frac {{tfrac {4ki}{(1+k)^{2}}}operatorname {sn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)operatorname {cn} left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)}{operatorname {dn} ^{2}left({tfrac {1+k}{2}}u,{tfrac {2{sqrt {k}}}{1+k}}right)-{tfrac {1-k}{1+k}}}}end{aligned}}}

虚数変換により

sn⁡(iu,1−k2)=4k(1+k)2sc⁡(1+k2iu,1−k1+k)nc⁡(1+k2iu,1−k1+k)dc2⁡(1+k2iu,1−k1+k)−1−k1+k=4k(1+k)2sn⁡(1+k2iu,1−k1+k)dn2⁡(1+k2iu,1−k1+k)−1−k1+kcn2⁡(1+k2iu,1−k1+k)=4k(1+k)2sn⁡(1+k2iu,1−k1+k)2k1+k+2k(1−k)(1+k)2sn2⁡(1+k2iu,1−k1+k)=21+ksn⁡(1+k2iu,1−k1+k)1+1−k1+ksn2⁡(1+k2iu,1−k1+k){displaystyle {begin{aligned}operatorname {sn} left(iu,{sqrt {1-k^{2}}}right)&={frac {{tfrac {4k}{(1+k)^{2}}}operatorname {sc} left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)operatorname {nc} left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)}{operatorname {dc} ^{2}left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)-{tfrac {1-k}{1+k}}}}&={frac {{tfrac {4k}{(1+k)^{2}}}operatorname {sn} left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)}{operatorname {dn} ^{2}left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)-{tfrac {1-k}{1+k}}operatorname {cn} ^{2}left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)}}&={frac {{tfrac {4k}{(1+k)^{2}}}operatorname {sn} left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)}{{tfrac {2k}{1+k}}+{tfrac {2k(1-k)}{(1+k)^{2}}}operatorname {sn} ^{2}left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)}}&={frac {{tfrac {2}{1+k}}operatorname {sn} left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)}{1+{tfrac {1-k}{1+k}}operatorname {sn} ^{2}left({tfrac {1+k}{2}}iu,{tfrac {1-k}{1+k}}right)}}end{aligned}}}

iu{displaystyle iu}

u{displaystyle u}

と書き、

1−k2{displaystyle {sqrt {1-k^{2}}}}

k{displaystyle k}

と書けば

sn⁡(u,k)=21+1−k2sn⁡(1+1−k22u,1−1−k21+1−k2)1+1−1−k21+1−k2sn2⁡(1+1−k22u,1−1−k21+1−k2){displaystyle {begin{aligned}operatorname {sn} left(u,kright)&={frac {{tfrac {2}{1+{sqrt {1-k^{2}}}}}operatorname {sn} left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}{1+{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}operatorname {sn} ^{2}left({tfrac {1+{sqrt {1-k^{2}}}}{2}}u,{tfrac {1-{sqrt {1-k^{2}}}}{1+{sqrt {1-k^{2}}}}}right)}}end{aligned}}}

となるが、これは下降ランデン変換である。