Pin grid array – Wikipedia

In a PGA, the package is square or rectangular, and the pins are arranged in a regular array on the underside of the package

Closeup of the pins of a pin grid array

The pin grid array at the bottom of a XC68020, a prototype of the Motorola 68020 microprocessor

The pin grid array on the bottom of an AMD Phenom X4 9750 processor that uses the AMD AM2+ socket

A pin grid array (PGA) is a type of integrated circuit packaging. In a PGA, the package is square or rectangular, and the pins are arranged in a regular array on the underside of the package. The pins are commonly spaced 2.54 mm (0.1″) apart,[1] and may or may not cover the entire underside of the package.

PGAs are often mounted on printed circuit boards using the through hole method or inserted into a socket. PGAs allow for more pins per integrated circuit than older packages, such as dual in-line package (DIP).

PGA variants[edit]

Plastic[edit]

The topside of a Celeron-400 in a PPGA packing

Plastic pin grid array (PPGA) packaging was used by Intel for late-model Mendocino core Celeron processors based on Socket 370.[2] Some pre-Socket 8 processors also used a similar form factor, although they were not officially referred to as PPGA.

Flip chip[edit]

The underside of a FC-PGA package (the die is on the other side)

A flip-chip pin grid array (FC-PGA or FCPGA) is a form of pin grid array in which the die faces downwards on the top of the substrate with the back of the die exposed. This allows the die to have a more direct contact with the heatsink or other cooling mechanism.

The FC-PGA was introduced by Intel with the Coppermine core Pentium III and Celeron[3] processors based on Socket 370, and was later used for Socket 478-based Pentium 4[4] and Celeron processors. FC-PGA processors fit into zero insertion force (ZIF) Socket 370 and Socket 478-based motherboard sockets; similar packages have also been used by AMD. It is still used today[when?] for mobile Intel processors.

Staggered pin[edit]

The staggered pin grid array (SPGA) is used by Intel processors based on Socket 5 and Socket 7. Socket 8 used a partial SPGA layout on half the processor.

An example of a socket for a staggered pin grid array package

View of the socket 7 321-pin connectors of a CPU

It consists of two square arrays of pins, offset in both directions by half the minimum distance between pins in one of the arrays. Put differently: within a square boundary the pins form a diagonal square lattice. There is generally a section in the center of the package without any pins. SPGA packages are usually used by devices that require a higher pin density than what a PGA can provide, such as microprocessors.

Ceramic[edit]

A ceramic pin grid array (CPGA) is a type of packaging used by integrated circuits. This type of packaging uses a ceramic substrate with pins arranged in a pin grid array. Some CPUs that use CPGA packaging are the AMD Socket A Athlons and the Duron.

A CPGA was used by AMD for Athlon and Duron processors based on Socket A, as well as some AMD processors based on Socket AM2 and Socket AM2+. While similar form factors have been used by other manufacturers, they are not officially referred to as CPGA. This type of packaging uses a ceramic substrate with pins arranged in an array.

Organic[edit]

Demonstration of a PGA-ZIF socket (AMD 754)

An organic pin grid array (OPGA) is a type of connection for integrated circuits, and especially CPUs, where the silicon die is attached to a plate made out of an organic plastic which is pierced by an array of pins which make the requisite connections to the socket.

Stud[edit]

A stud grid array (SGA) is a short-pinned pin grid array chip scale package for use in surface-mount technology. The polymer stud grid array or plastic stud grid array was developed jointly by the Interuniversity Microelectronics Centre (IMEC) and Laboratory for Production Technology, Siemens AG.[5][6]

rPGA[edit]

The reduced pin grid array was used by the socketed mobile variants of Intel’s Core i3/5/7 processors and features a reduced pin pitch of 1 mm,[7] as opposed to the 1.27 mm pin pitch used by contemporary AMD processors and older Intel processors. It is used in the G1, G2, and G3 sockets.

See also[edit]

References[edit]

Sources[edit]

External links[edit]