束 (束論) – Wikipedia

数学における(そく、英語: lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。

「束」 (“lattice”) の名は、そのハッセ図が描く模様から示唆されてのものである[要出典]。ここに示した図は、四元集合 {1,2,3,4} の分割の成す束である。ただし、順序は「一方は他方の細分である」という関係を用いて入れる。

半順序集合として[編集]

半順序集合 (L, ≤) がであるとは、以下の二条件が満足されるときに言う。

二元の結びの存在
L の任意の二元 a, b に対して、二元集合 {a, b} が結び(上限、最小上界、和) ab を持つ。
二元の交わりの存在
L の任意の二元 a, b に対して、二元集合 {a, b} が交わり(下限、最大下界、積) ab を持つ。

これにより、∨ および ∧ は L 上の二項演算となる。最初の条件は L結び半束英語版 (join-semilattice) となることを主張するものであり、後の条件は L交わり半束英語版 (meet-semilattice) となることをいうものである。二つの演算はその順序に関して単調である。すなわち、a1a2 かつ b1b2 ならば

a1∨b1≤a2∨b2,a1∧b1≤a2∧b2{displaystyle a_{1}lor b_{1}leq a_{2}lor b_{2},quad a_{1}land b_{1}leq a_{2}land b_{2}}

がともに成り立つ。

このとき、帰納的に、束の任意の空でない有限集合に対して、その結び(上限)および交わり(下限)の存在が示せる。さらに仮定を増やせば、もっといろいろなことが言える場合もある。完備性 (順序集合論)英語版等を参照。そういった文脈では、上記の定義をもっと別の方法、例えば適当なガロワ接続英語版の存在によって定義することもできる(これは束に対するある種のガロワ理論的な手法である)[要出典]

有界束 (bounded lattice) は 1 で表される最大元 (greatest element, maximum, top (⊤)) および 0 で表される最小元 (least element, minimum, bottom (⊥)) を持つ束である。任意の束は最大元と最小元を付加することにより有界束とすることができる。また、空でない任意の有限束は有界である(全ての元の結びおよび交わりが最大元及び最小元を与える)。すなわち、A = {a1, …, an} ならば